Qi Ouyang, Hongchang Chen, Shuxin Liu, Liming Pu, Dongdong Ge, Ke Fan
{"title":"DMHANT: DropMessage Hypergraph Attention Network for Information Propagation Prediction.","authors":"Qi Ouyang, Hongchang Chen, Shuxin Liu, Liming Pu, Dongdong Ge, Ke Fan","doi":"10.1089/big.2023.0131","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting propagation cascades is crucial for understanding information propagation in social networks. Existing methods always focus on structure or order of infected users in a single cascade sequence, ignoring the global dependencies of cascades and users, which is insufficient to characterize their dynamic interaction preferences. Moreover, existing methods are poor at addressing the problem of model robustness. To address these issues, we propose a predication model named DropMessage Hypergraph Attention Networks, which constructs a hypergraph based on the cascade sequence. Specifically, to dynamically obtain user preferences, we divide the diffusion hypergraph into multiple subgraphs according to the time stamps, develop hypergraph attention networks to explicitly learn complete interactions, and adopt a gated fusion strategy to connect them for user cascade prediction. In addition, a new drop immediately method DropMessage is added to increase the robustness of the model. Experimental results on three real-world datasets indicate that proposed model significantly outperforms the most advanced information propagation prediction model in both MAP@k and Hits@K metrics, and the experiment also proves that the model achieves more significant prediction performance than the existing model under data perturbation.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2023.0131","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting propagation cascades is crucial for understanding information propagation in social networks. Existing methods always focus on structure or order of infected users in a single cascade sequence, ignoring the global dependencies of cascades and users, which is insufficient to characterize their dynamic interaction preferences. Moreover, existing methods are poor at addressing the problem of model robustness. To address these issues, we propose a predication model named DropMessage Hypergraph Attention Networks, which constructs a hypergraph based on the cascade sequence. Specifically, to dynamically obtain user preferences, we divide the diffusion hypergraph into multiple subgraphs according to the time stamps, develop hypergraph attention networks to explicitly learn complete interactions, and adopt a gated fusion strategy to connect them for user cascade prediction. In addition, a new drop immediately method DropMessage is added to increase the robustness of the model. Experimental results on three real-world datasets indicate that proposed model significantly outperforms the most advanced information propagation prediction model in both MAP@k and Hits@K metrics, and the experiment also proves that the model achieves more significant prediction performance than the existing model under data perturbation.
Big DataCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍:
Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions.
Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government.
Big Data coverage includes:
Big data industry standards,
New technologies being developed specifically for big data,
Data acquisition, cleaning, distribution, and best practices,
Data protection, privacy, and policy,
Business interests from research to product,
The changing role of business intelligence,
Visualization and design principles of big data infrastructures,
Physical interfaces and robotics,
Social networking advantages for Facebook, Twitter, Amazon, Google, etc,
Opportunities around big data and how companies can harness it to their advantage.