Bevel-Tip Needle Deflection Modeling, Simulation, and Validation in Multi-Layer Tissues.

Yanzhou Wang, Lidia Al-Zogbi, Guanyun Liu, Jiawei Liu, Junichi Tokuda, Axel Krieger, Iulian Iordachita
{"title":"Bevel-Tip Needle Deflection Modeling, Simulation, and Validation in Multi-Layer Tissues.","authors":"Yanzhou Wang, Lidia Al-Zogbi, Guanyun Liu, Jiawei Liu, Junichi Tokuda, Axel Krieger, Iulian Iordachita","doi":"10.1109/icra57147.2024.10610110","DOIUrl":null,"url":null,"abstract":"<p><p>Percutaneous needle insertions are commonly performed for diagnostic and therapeutic purposes as an effective alternative to more invasive surgical procedures. However, the outcome of needle-based approaches relies heavily on the accuracy of needle placement, which remains a challenge even with robot assistance and medical imaging guidance due to needle deflection caused by contact with soft tissues. In this paper, we present a novel mechanics-based 2D bevel-tip needle model that can account for the effect of nonlinear strain-dependent behavior of biological soft tissues under compression. Real-time finite element simulation allows multiple control inputs along the length of the needle with full three-degree-of-freedom (DOF) planar needle motions. Cross-validation studies using custom-designed multi-layer tissue phantoms as well as heterogeneous chicken breast tissues result in less than 1mm in-plane errors for insertions reaching depths of up to 61 mm, demonstrating the validity and generalizability of the proposed method.</p>","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"2024 ","pages":"11598-11604"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494283/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra57147.2024.10610110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Percutaneous needle insertions are commonly performed for diagnostic and therapeutic purposes as an effective alternative to more invasive surgical procedures. However, the outcome of needle-based approaches relies heavily on the accuracy of needle placement, which remains a challenge even with robot assistance and medical imaging guidance due to needle deflection caused by contact with soft tissues. In this paper, we present a novel mechanics-based 2D bevel-tip needle model that can account for the effect of nonlinear strain-dependent behavior of biological soft tissues under compression. Real-time finite element simulation allows multiple control inputs along the length of the needle with full three-degree-of-freedom (DOF) planar needle motions. Cross-validation studies using custom-designed multi-layer tissue phantoms as well as heterogeneous chicken breast tissues result in less than 1mm in-plane errors for insertions reaching depths of up to 61 mm, demonstrating the validity and generalizability of the proposed method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多层组织中的斜面针尖偏转建模、仿真和验证。
经皮穿刺针插入通常用于诊断和治疗目的,是更具侵入性的外科手术的有效替代方法。然而,经皮穿刺针疗法的效果在很大程度上取决于穿刺针置放的准确性,而由于穿刺针与软组织接触导致偏移,即使有机器人辅助和医学影像引导,置放准确性仍是一项挑战。在本文中,我们提出了一种新型的基于力学的二维斜面针尖模型,该模型可以考虑生物软组织在压缩条件下的非线性应变行为。实时有限元仿真允许沿针的长度方向进行多个控制输入,针的平面运动具有完整的三自由度 (DOF)。使用定制设计的多层组织模型以及异质鸡胸组织进行交叉验证研究,结果显示,插入深度达 61 毫米的针头平面误差小于 1 毫米,证明了所提方法的有效性和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
期刊最新文献
Towards a Unified Approach for Continuously-Variable Impedance Control of Powered Prosthetic Legs over Walking Speeds and Inclines. Cooperative vs. Teleoperation Control of the Steady Hand Eye Robot with Adaptive Sclera Force Control: A Comparative Study. Bevel-Tip Needle Deflection Modeling, Simulation, and Validation in Multi-Layer Tissues. Exploring the Needle Tip Interaction Force with Retinal Tissue Deformation in Vitreoretinal Surgery. Fully Distributed Shape Sensing of a Flexible Surgical Needle Using Optical Frequency Domain Reflectometry for Prostate Interventions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1