Deep learning disconnectomes to accelerate and improve long-term predictions for post-stroke symptoms.

IF 4.1 Q1 CLINICAL NEUROLOGY Brain communications Pub Date : 2024-09-30 eCollection Date: 2024-01-01 DOI:10.1093/braincomms/fcae338
Anna Matsulevits, Pierrick Coupé, Huy-Dung Nguyen, Lia Talozzi, Chris Foulon, Parashkev Nachev, Maurizio Corbetta, Thomas Tourdias, Michel Thiebaut de Schotten
{"title":"Deep learning disconnectomes to accelerate and improve long-term predictions for post-stroke symptoms.","authors":"Anna Matsulevits, Pierrick Coupé, Huy-Dung Nguyen, Lia Talozzi, Chris Foulon, Parashkev Nachev, Maurizio Corbetta, Thomas Tourdias, Michel Thiebaut de Schotten","doi":"10.1093/braincomms/fcae338","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the efficacy of deep-learning models in expediting the generation of disconnectomes for individualized prediction of neuropsychological outcomes one year after stroke. Utilising a 3D U-Net network, we trained a model on a dataset of <i>N</i> = 1333 synthetic lesions and corresponding disconnectomes, subsequently applying it to <i>N</i> = 1333 real stroke lesions. The model-generated disconnection patterns were then projected into a two-dimensional 'morphospace' via uniform manifold approximation and projection for dimension reduction dimensionality reduction. We correlated the positioning within this morphospace with one-year neuropsychological scores across 86 metrics in a novel cohort of 119 stroke patients, employing multiple regression models and validating the findings in an out-of-sample group of 20 patients. Our results demonstrate that the 3D U-Net model captures the critical information of conventional disconnectomes with a notable increase in efficiency, generating deep-disconnectomes 720 times faster than current state-of-the-art software. The predictive accuracy of neuropsychological outcomes by deep-disconnectomes averaged 85.2% (<i>R</i> <sup>2</sup> = 0.208), which significantly surpassed the conventional disconnectome approach (<i>P</i> = 0.009). These findings mark a substantial advancement in the production of disconnectome maps via deep learning, suggesting that this method could greatly enhance the prognostic assessment and clinical management of stroke survivors by incorporating disconnection patterns as a predictive tool.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503950/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/braincomms/fcae338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the efficacy of deep-learning models in expediting the generation of disconnectomes for individualized prediction of neuropsychological outcomes one year after stroke. Utilising a 3D U-Net network, we trained a model on a dataset of N = 1333 synthetic lesions and corresponding disconnectomes, subsequently applying it to N = 1333 real stroke lesions. The model-generated disconnection patterns were then projected into a two-dimensional 'morphospace' via uniform manifold approximation and projection for dimension reduction dimensionality reduction. We correlated the positioning within this morphospace with one-year neuropsychological scores across 86 metrics in a novel cohort of 119 stroke patients, employing multiple regression models and validating the findings in an out-of-sample group of 20 patients. Our results demonstrate that the 3D U-Net model captures the critical information of conventional disconnectomes with a notable increase in efficiency, generating deep-disconnectomes 720 times faster than current state-of-the-art software. The predictive accuracy of neuropsychological outcomes by deep-disconnectomes averaged 85.2% (R 2 = 0.208), which significantly surpassed the conventional disconnectome approach (P = 0.009). These findings mark a substantial advancement in the production of disconnectome maps via deep learning, suggesting that this method could greatly enhance the prognostic assessment and clinical management of stroke survivors by incorporating disconnection patterns as a predictive tool.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习断开连接,加快并改善对中风后症状的长期预测。
本研究探讨了深度学习模型在加速生成中风一年后神经心理结果个体化预测的断开组方面的功效。利用三维 U-Net 网络,我们在一个包含 N = 1333 个合成病灶和相应断开组的数据集上训练了一个模型,随后将其应用于 N = 1333 个真实中风病灶。然后,通过均匀流形近似和投影降维,将模型生成的断开模式投影到二维 "形态空间 "中。我们将该形态空间内的定位与 119 名中风患者组成的新队列中 86 项指标的一年期神经心理评分相关联,采用了多元回归模型,并在 20 名患者的样本外群体中验证了研究结果。我们的研究结果表明,三维 U-Net 模型捕捉到了传统断开组的关键信息,而且效率明显提高,生成深度断开组的速度比目前最先进的软件快 720 倍。深度断开组对神经心理学结果的预测准确率平均为 85.2%(R 2 = 0.208),明显高于传统断开组方法(P = 0.009)。这些研究结果标志着通过深度学习生成断开组图谱取得了重大进展,表明这种方法通过将断开模式作为一种预测工具,可以大大提高中风幸存者的预后评估和临床管理水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
审稿时长
6 weeks
期刊最新文献
Cerebellar activity in hemi-parkinsonian rats during volitional gait and freezing. Cerebellar activity in PINK1 knockout rats during volitional gait. Enhanced MRI-based brain tumour classification with a novel Pix2pix generative adversarial network augmentation framework. The spine-brain axis: is spinal anatomy associated with brain volume? A glycan biomarker predicts cognitive decline in amyloid- and tau-negative patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1