Pub Date : 2025-01-17eCollection Date: 2025-01-01DOI: 10.1093/braincomms/fcae386
Hallie Gaitsch, Peggy Assinck, Penelope Dimas, Chao Zhao, Laura Morcom, David H Rowitch, Daniel S Reich, Robin J M Franklin
The extent to which glial cell turnover features in successful remyelination is unclear. In this study, the rat caudal cerebellar peduncle-ethidium bromide lesion model was used to profile oligodendroglial and microglial/macrophage cell death and proliferation dynamics over the course of repair. Lesioned and control tissue was co-labelled with antibody markers for cell identity, proliferation, and apoptosis (TUNEL assay), then imaged at full thickness using confocal microscopy and quantified using custom CellProfiler pipelines. Early remyelination time points were marked by an increased density of total proliferating cells, including oligodendrocyte progenitor cells. Late remyelination time points featured increased TUNEL+ oligodendrocyte progenitor cells: however, most TUNEL+ cells within remyelinating lesions were Iba1+ microglia/macrophages. These results indicate that repairing lesions are characterized by a high degree of glial cell death and suggest that monitoring cell death-related by-products might have clinical value in the setting of remyelination.
{"title":"Significant oligodendrocyte progenitor and microglial cell death is a feature of remyelination following toxin-induced experimental demyelination.","authors":"Hallie Gaitsch, Peggy Assinck, Penelope Dimas, Chao Zhao, Laura Morcom, David H Rowitch, Daniel S Reich, Robin J M Franklin","doi":"10.1093/braincomms/fcae386","DOIUrl":"https://doi.org/10.1093/braincomms/fcae386","url":null,"abstract":"<p><p>The extent to which glial cell turnover features in successful remyelination is unclear. In this study, the rat caudal cerebellar peduncle-ethidium bromide lesion model was used to profile oligodendroglial and microglial/macrophage cell death and proliferation dynamics over the course of repair. Lesioned and control tissue was co-labelled with antibody markers for cell identity, proliferation, and apoptosis (TUNEL assay), then imaged at full thickness using confocal microscopy and quantified using custom CellProfiler pipelines. Early remyelination time points were marked by an increased density of total proliferating cells, including oligodendrocyte progenitor cells. Late remyelination time points featured increased TUNEL+ oligodendrocyte progenitor cells: however, most TUNEL+ cells within remyelinating lesions were Iba1+ microglia/macrophages. These results indicate that repairing lesions are characterized by a high degree of glial cell death and suggest that monitoring cell death-related by-products might have clinical value in the setting of remyelination.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcae386"},"PeriodicalIF":4.1,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11739797/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143018302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-16eCollection Date: 2025-01-01DOI: 10.1093/braincomms/fcae444
Kelsey Paulhus, Edward Glasscock
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related death, likely stemming from seizure activity disrupting vital brain centres controlling heart and breathing function. However, understanding of SUDEP's anatomical basis and mechanisms remains limited, hampering risk evaluation and prevention strategies. Prior studies using a neuron-specific Kcna1 conditional knockout mouse model of SUDEP identified the primary importance of brain-driven mechanisms contributing to sudden death and cardiorespiratory dysregulation; yet, the underlying neurocircuits have not been identified. Using the Emx1-Cre driver, we generated a new conditional knockout mouse model lacking Kcna1 in excitatory neurons of the cortex, hippocampus, amygdala and select vagal afferents. To test whether the absence of Kv1.1 in forebrain corticolimbic circuits is sufficient to induce spontaneous seizures, premature mortality and cardiorespiratory dysfunction, we performed survival studies and EEG, ECG, and plethysmography (EEG-ECG-Pleth) recordings. We demonstrate premature death and epilepsy in corticolimbic conditional knockout mice. During monitoring, we fortuitously captured one SUDEP event, which showed a generalized tonic-clonic seizure that initiated respiratory dysfunction culminating in cardiorespiratory failure. In addition, we observed that cardiorespiratory abnormalities are common during non-fatal seizures in conditional knockout mice, but mostly absent during interictal periods, implying ictal, not interictal, cardiorespiratory impairment as a more reliable indicator of SUDEP risk. These results point to corticolimbic excitatory neurons as critical neural substrates in SUDEP and affirm seizure-related respiratory and cardiac failure as a likely cause of death.
{"title":"Seizures and premature death in mice with targeted Kv1.1 deficiency in corticolimbic circuits.","authors":"Kelsey Paulhus, Edward Glasscock","doi":"10.1093/braincomms/fcae444","DOIUrl":"https://doi.org/10.1093/braincomms/fcae444","url":null,"abstract":"<p><p>Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related death, likely stemming from seizure activity disrupting vital brain centres controlling heart and breathing function. However, understanding of SUDEP's anatomical basis and mechanisms remains limited, hampering risk evaluation and prevention strategies. Prior studies using a neuron-specific <i>Kcna1</i> conditional knockout mouse model of SUDEP identified the primary importance of brain-driven mechanisms contributing to sudden death and cardiorespiratory dysregulation; yet, the underlying neurocircuits have not been identified. Using the <i>Emx1</i>-Cre driver, we generated a new conditional knockout mouse model lacking <i>Kcna1</i> in excitatory neurons of the cortex, hippocampus, amygdala and select vagal afferents. To test whether the absence of Kv1.1 in forebrain corticolimbic circuits is sufficient to induce spontaneous seizures, premature mortality and cardiorespiratory dysfunction, we performed survival studies and EEG, ECG, and plethysmography (EEG-ECG-Pleth) recordings. We demonstrate premature death and epilepsy in corticolimbic conditional knockout mice. During monitoring, we fortuitously captured one SUDEP event, which showed a generalized tonic-clonic seizure that initiated respiratory dysfunction culminating in cardiorespiratory failure. In addition, we observed that cardiorespiratory abnormalities are common during non-fatal seizures in conditional knockout mice, but mostly absent during interictal periods, implying ictal, not interictal, cardiorespiratory impairment as a more reliable indicator of SUDEP risk. These results point to corticolimbic excitatory neurons as critical neural substrates in SUDEP and affirm seizure-related respiratory and cardiac failure as a likely cause of death.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcae444"},"PeriodicalIF":4.1,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735082/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143018299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15eCollection Date: 2025-01-01DOI: 10.1093/braincomms/fcae416
Jason B Carmel
This scientific commentary refers to 'Intraspinal microstimulation of the ventral horn has therapeutically relevant cross-modal effects on nociception', by Bandres et al. (https://doi.org/10.1093/braincomms/fcae280).
{"title":"The ins and outs of spinal cord stimulation.","authors":"Jason B Carmel","doi":"10.1093/braincomms/fcae416","DOIUrl":"https://doi.org/10.1093/braincomms/fcae416","url":null,"abstract":"<p><p>This scientific commentary refers to 'Intraspinal microstimulation of the ventral horn has therapeutically relevant cross-modal effects on nociception', by Bandres <i>et al</i>. (https://doi.org/10.1093/braincomms/fcae280).</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcae416"},"PeriodicalIF":4.1,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733736/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143018320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15eCollection Date: 2025-01-01DOI: 10.1093/braincomms/fcae432
Kaitlin B Casaletto, Rowan Saloner, John Kornak, Adam M Staffaroni, Saul Villeda, Emily Paolillo, Anna M VandeBunte, Claire J Cadwallader, Argentina Lario Lago, Julia Webb, Coty Chen, Katya Rascovsky, Toji Miyagawa, Eliana Marisa Ramos, Joseph C Masdeu, Alexander Pantelyat, Maria Carmela Tartaglia, Andrea Bozoki, Peter S Pressman, Rosa Rademakers, Walter Kremers, Ryan Darby, Kyan Younes, Belen Pascual, Nupur Ghoshal, Maria Lapid, Ian R A Mackenzie, Jingyao Li, Ging-Yuek Robin Hsiung, Jacob N Hall, Maya V Yutsis, Irene Litvan, Victor W Henderson, Rajeev Sivasankaran, Katie Worringer, Kimiko Domoto-Reilly, Allison Synder, Joseph Loureiro, Joel H Kramer, Hilary Heuer, Leah K Forsberg, Howard J Rosen, Bradley Boeve, Julio C Rojas, Adam L Boxer
The largest risk factor for dementia is age. Heterochronic blood exchange studies have uncovered age-related blood factors that demonstrate 'pro-aging' or 'pro-youthful' effects on the mouse brain. The clinical relevance and combined effects of these factors for humans is unclear. We examined five previously identified brain rejuvenation factors in cerebrospinal fluid of adults with autosomal dominant forms of frontotemporal dementia and sporadic Alzheimer's disease. Our frontotemporal dementia cohort included 100 observationally followed adults carrying autosomal dominant frontotemporal dementia mutations (Mage = 49.6; 50% female; 43% C9orf72, 24% GRN, 33% MAPT) and 62 non-carriers (Mage = 52.6; 45% female) with cerebrospinal fluid analysed on Somascan, and longitudinal (Mvisits = 3 years, range 1-7 years) neuropsychological and functional assessments and plasma neurofilament light chain. Our Alzheimer's disease cohort included 35 adults with sporadic Alzheimer's disease (Mage = 69.4; 60% female) and 56 controls (Mage = 68.8, 50% female) who completed the same cerebrospinal fluid and clinical outcome measures cross-sectionally. Levels of C-C motif chemokine ligand 11, C-C motif chemokine ligand 2, beta-2-micorglobulin, bone gamma-carboxyglutamate protein (aka Osteocalcin) and colony stimulating factor 2 in cerebrospinal fluid were linearly combined into a composite score, with higher values reflecting 'pro-youthful' levels. In genetic frontotemporal dementia, higher baseline cerebrospinal fluid rejuvenation proteins predicted slower decline across cognitive, functional, and neurofilament light chain trajectories; estimates were similar across genotypes. In transdiagnostic analyses, higher cerebrospinal fluid rejuvenation proteins associated with better functional, cognitive, and neurofilament light chain outcomes in adults with sporadic Alzheimer's disease. Proteins with pre-clinical evidence for brain rejuvenation show translational clinical relevance in adults with Alzheimer's disease and related dementias and warrant further investigation.
{"title":"Brain aging rejuvenation factors in adults with genetic and sporadic neurodegenerative disease.","authors":"Kaitlin B Casaletto, Rowan Saloner, John Kornak, Adam M Staffaroni, Saul Villeda, Emily Paolillo, Anna M VandeBunte, Claire J Cadwallader, Argentina Lario Lago, Julia Webb, Coty Chen, Katya Rascovsky, Toji Miyagawa, Eliana Marisa Ramos, Joseph C Masdeu, Alexander Pantelyat, Maria Carmela Tartaglia, Andrea Bozoki, Peter S Pressman, Rosa Rademakers, Walter Kremers, Ryan Darby, Kyan Younes, Belen Pascual, Nupur Ghoshal, Maria Lapid, Ian R A Mackenzie, Jingyao Li, Ging-Yuek Robin Hsiung, Jacob N Hall, Maya V Yutsis, Irene Litvan, Victor W Henderson, Rajeev Sivasankaran, Katie Worringer, Kimiko Domoto-Reilly, Allison Synder, Joseph Loureiro, Joel H Kramer, Hilary Heuer, Leah K Forsberg, Howard J Rosen, Bradley Boeve, Julio C Rojas, Adam L Boxer","doi":"10.1093/braincomms/fcae432","DOIUrl":"https://doi.org/10.1093/braincomms/fcae432","url":null,"abstract":"<p><p>The largest risk factor for dementia is age. Heterochronic blood exchange studies have uncovered age-related blood factors that demonstrate 'pro-aging' or 'pro-youthful' effects on the mouse brain. The clinical relevance and combined effects of these factors for humans is unclear. We examined five previously identified brain rejuvenation factors in cerebrospinal fluid of adults with autosomal dominant forms of frontotemporal dementia and sporadic Alzheimer's disease. Our frontotemporal dementia cohort included 100 observationally followed adults carrying autosomal dominant frontotemporal dementia mutations (M<sub>age</sub> = 49.6; 50% female; 43% <i>C9orf72</i>, 24% <i>GRN</i>, 33% <i>MAPT</i>) and 62 non-carriers (M<sub>age</sub> = 52.6; 45% female) with cerebrospinal fluid analysed on Somascan, and longitudinal (M<sub>visits</sub> = 3 years, range 1-7 years) neuropsychological and functional assessments and plasma neurofilament light chain. Our Alzheimer's disease cohort included 35 adults with sporadic Alzheimer's disease (M<sub>age</sub> = 69.4; 60% female) and 56 controls (M<sub>age</sub> = 68.8, 50% female) who completed the same cerebrospinal fluid and clinical outcome measures cross-sectionally. Levels of C-C motif chemokine ligand 11, C-C motif chemokine ligand 2, beta-2-micorglobulin, bone gamma-carboxyglutamate protein (aka Osteocalcin) and colony stimulating factor 2 in cerebrospinal fluid were linearly combined into a composite score, with higher values reflecting 'pro-youthful' levels. In genetic frontotemporal dementia, higher baseline cerebrospinal fluid rejuvenation proteins predicted slower decline across cognitive, functional, and neurofilament light chain trajectories; estimates were similar across genotypes. In transdiagnostic analyses, higher cerebrospinal fluid rejuvenation proteins associated with better functional, cognitive, and neurofilament light chain outcomes in adults with sporadic Alzheimer's disease. Proteins with pre-clinical evidence for brain rejuvenation show translational clinical relevance in adults with Alzheimer's disease and related dementias and warrant further investigation.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcae432"},"PeriodicalIF":4.1,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734525/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143017878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15eCollection Date: 2025-01-01DOI: 10.1093/braincomms/fcae467
Bryan Ng, Henrik Zetterberg
This scientific commentary refers to 'Brain aging rejuvenation factors in adults with genetic and sporadic neurodegenerative disease', by Casaletto et al. (https://doi.org/10.1093/braincomms/fcae432).
{"title":"Know your brain aging to know your resilience in neurodegenerative diseases.","authors":"Bryan Ng, Henrik Zetterberg","doi":"10.1093/braincomms/fcae467","DOIUrl":"https://doi.org/10.1093/braincomms/fcae467","url":null,"abstract":"<p><p>This scientific commentary refers to 'Brain aging rejuvenation factors in adults with genetic and sporadic neurodegenerative disease', by Casaletto <i>et al</i>. (https://doi.org/10.1093/braincomms/fcae432).</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcae467"},"PeriodicalIF":4.1,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734524/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143018131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15eCollection Date: 2025-01-01DOI: 10.1093/braincomms/fcae402
Ozlem Yildiz, Guy P Hunt, Johannes Schroth, Gurleen Dhillon, Thomas P Spargo, Ammar Al-Chalabi, Sulev Koks, Martin R Turner, Pamela J Shaw, Sian M Henson, Alfredo Iacoangeli, Andrea Malaspina
Neuroinflammation impacts on the progression of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. Specialized pro-resolving mediators trigger the resolution of inflammation. We investigate the specialized pro-resolving mediator blood profile and their receptors' expression in peripheral blood mononuclear cells in relation to survival in ALS. People living with ALS (pwALS) were stratified based on bulbar versus limb onset and on key progression metrics using a latent class model, to separate faster progressing from slower progressing ALS. Specialized pro-resolving mediator blood concentrations were measured at baseline and in one additional visit in 20 pwALS and 10 non-neurological controls (Cohort 1). Flow cytometry was used to study the GPR32 and GPR18 resolvin receptors' expression in peripheral blood mononuclear cells from 40 pwALS and 20 non-neurological controls (Cohort 2) at baseline and in two additional visits in 17 pwALS. Survival analysis was performed using Cox proportional hazards models, including known clinical predictors and GPR32 and GPR18 mononuclear cell expression. Differential expression and linear discriminant analyses showed that plasma resolvins were able to distinguish phenotypic variants of ALS from non-neurological controls. RvE3 was elevated in blood from pwALS, whilst RvD1, RvE3, RvT4 and RvD1n-3 DPA were upregulated in A-S and RvD2 in A-F. Compared to non-neurological controls, GPR32 was upregulated in monocytes expressing the active inflammation-suppressing CD11b+ integrin from fast-progressing pwALS, including those with bulbar onset disease (P < 0.0024), whilst GPR32 and GPR18 were downregulated in most B and T cell subtypes. Only GPR18 was upregulated in naïve double positive Tregs, memory cytotoxic Tregs, senescent late memory B cells and late senescent CD8+ T cells from pwALS compared to non-neurological controls (P < 0.0431). Higher GPR32 and GPR18 median expression in blood mononuclear cells was associated with longer survival, with GPR32 expression in classical monocytes (hazard ratio: 0.11, P = 0.003) and unswitched memory B cells (hazard ratio: 0.44, P = 0.008) showing the most significant association, along with known clinical predictors. Low levels of resolvins and downregulation of their membrane receptors in blood mononuclear cells are linked to a faster progression of ALS. Higher mononuclear cell expression of resolvin receptors is a predictor of longer survival. These findings suggest a lipid-mediated neuroprotective response that could be harnessed to develop novel therapeutic strategies and biomarkers for ALS.
{"title":"Lipid-mediated resolution of inflammation and survival in amyotrophic lateral sclerosis.","authors":"Ozlem Yildiz, Guy P Hunt, Johannes Schroth, Gurleen Dhillon, Thomas P Spargo, Ammar Al-Chalabi, Sulev Koks, Martin R Turner, Pamela J Shaw, Sian M Henson, Alfredo Iacoangeli, Andrea Malaspina","doi":"10.1093/braincomms/fcae402","DOIUrl":"https://doi.org/10.1093/braincomms/fcae402","url":null,"abstract":"<p><p>Neuroinflammation impacts on the progression of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. Specialized pro-resolving mediators trigger the resolution of inflammation. We investigate the specialized pro-resolving mediator blood profile and their receptors' expression in peripheral blood mononuclear cells in relation to survival in ALS. People living with ALS (pwALS) were stratified based on bulbar versus limb onset and on key progression metrics using a latent class model, to separate faster progressing from slower progressing ALS. Specialized pro-resolving mediator blood concentrations were measured at baseline and in one additional visit in 20 pwALS and 10 non-neurological controls (Cohort 1). Flow cytometry was used to study the GPR32 and GPR18 resolvin receptors' expression in peripheral blood mononuclear cells from 40 pwALS and 20 non-neurological controls (Cohort 2) at baseline and in two additional visits in 17 pwALS. Survival analysis was performed using Cox proportional hazards models, including known clinical predictors and GPR32 and GPR18 mononuclear cell expression. Differential expression and linear discriminant analyses showed that plasma resolvins were able to distinguish phenotypic variants of ALS from non-neurological controls. RvE3 was elevated in blood from pwALS, whilst RvD1, RvE3, RvT4 and RvD1<sub>n-3 DPA</sub> were upregulated in A-S and RvD2 in A-F. Compared to non-neurological controls, GPR32 was upregulated in monocytes expressing the active inflammation-suppressing CD11b<sup>+</sup> integrin from fast-progressing pwALS, including those with bulbar onset disease (<i>P</i> < 0.0024), whilst GPR32 and GPR18 were downregulated in most B and T cell subtypes. Only GPR18 was upregulated in naïve double positive Tregs, memory cytotoxic Tregs, senescent late memory B cells and late senescent CD8<sup>+</sup> T cells from pwALS compared to non-neurological controls (<i>P</i> < 0.0431). Higher GPR32 and GPR18 median expression in blood mononuclear cells was associated with longer survival, with GPR32 expression in classical monocytes (hazard ratio: 0.11, <i>P</i> = 0.003) and unswitched memory B cells (hazard ratio: 0.44, <i>P</i> = 0.008) showing the most significant association, along with known clinical predictors. Low levels of resolvins and downregulation of their membrane receptors in blood mononuclear cells are linked to a faster progression of ALS. Higher mononuclear cell expression of resolvin receptors is a predictor of longer survival. These findings suggest a lipid-mediated neuroprotective response that could be harnessed to develop novel therapeutic strategies and biomarkers for ALS.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcae402"},"PeriodicalIF":4.1,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733686/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143018069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-11eCollection Date: 2025-01-01DOI: 10.1093/braincomms/fcae419
Audrey P Fan, Meher R Juttukonda
This scientific commentary refers to 'Cerebrovascular reactivity and response times describe recent ischemic symptomatology in patients with moyamoya', by Han et al. (https://doi.org/10.1093/braincomms/fcae381).
{"title":"Cerebrovascular reactivity: a stress test of brain vascular health in moyamoya disease.","authors":"Audrey P Fan, Meher R Juttukonda","doi":"10.1093/braincomms/fcae419","DOIUrl":"10.1093/braincomms/fcae419","url":null,"abstract":"<p><p>This scientific commentary refers to 'Cerebrovascular reactivity and response times describe recent ischemic symptomatology in patients with moyamoya', by Han <i>et al</i>. (https://doi.org/10.1093/braincomms/fcae381).</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcae419"},"PeriodicalIF":4.1,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724430/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142973513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-11eCollection Date: 2025-01-01DOI: 10.1093/braincomms/fcae418
Kevin Lucy Namuli, Alana N Slike, Mason A Hollebeke, Galen E B Wright
<p><p>Huntington's disease is caused by a CAG repeat in the <i>HTT</i> gene. Repeat length correlates inversely with the age of onset but only explains part of the observed clinical variability. Genome-wide association studies highlight DNA repair genes in modifying disease onset, but further research is required to identify causal genes and evaluate their tractability as drug targets. To address these gaps and learn important preclinical information, we analysed genome-wide association study data from a large Huntington's disease age-of-onset study (<i>n</i> = 9064), prioritizing robust candidate Huntington's disease modifier genes using bioinformatic approaches and analysing related information for these genes from large-scale human genetic repositories. We supplemented this information with other Huntington's disease-related screens, including exome studies of Huntington's disease onset and high-throughput assessments of mHTT toxicity. To confirm whether Huntington's disease modifiers are shared across repeat expansion disorders, we also analysed age-of-onset genome-wide association study data from X-linked dystonia-parkinsonism caused by a (CCCTCT)<sub>n</sub> expansion. We also studied modifier-related associations with rare diseases to inform potential off-target therapeutic effects and conducted comprehensive phenome-wide studies to identify other traits linked to these genes. Finally, we evaluated the aggregated human genetic evidence and theoretical druggability of the prioritized Huntington's disease modifier genes, including characteristics recently associated with clinical trial stoppage due to safety concerns (i.e. human genetic constraint, number of interacting partners and RNA tissue expression specificity). In total, we annotated and assessed nine robust candidate Huntington's disease modifier genes. Notably, we detected a high correlation (<i>R</i> <sup>2</sup> = 0.78) in top age-of-onset genome-wide association study hits across repeat expansion disorders, emphasizing cross-disorder relevance. Clinical genetic repositories analysis showed DNA repair genes, such as <i>MLH1</i>, <i>PMS2</i> and <i>MSH3</i>, are associated with cancer phenotypes, suggesting potential limitations as drug targets. <i>LIG1</i> and <i>RRM2B</i> were both associated with neurofibrillary tangles, which may provide a link to a potential role in mHTT aggregates, while <i>MSH3</i> was associated with several cortical morphology-related traits relevant to Huntington's disease. Finally, human genetic evidence and theoretical druggability analyses prioritized and ranked modifier genes, with <i>PMS1</i> exhibiting the most favourable profile. Notably, <i>HTT</i> itself ranked poorly as a theoretical drug target, emphasizing the importance of exploring modifier-based alternative targets. In conclusion, our study highlights the importance of human genomic information to prioritize Huntington's disease modifier genes as drug targets, providing a basis for future t
{"title":"Genomic characterization of Huntington's disease genetic modifiers informs drug target tractability.","authors":"Kevin Lucy Namuli, Alana N Slike, Mason A Hollebeke, Galen E B Wright","doi":"10.1093/braincomms/fcae418","DOIUrl":"10.1093/braincomms/fcae418","url":null,"abstract":"<p><p>Huntington's disease is caused by a CAG repeat in the <i>HTT</i> gene. Repeat length correlates inversely with the age of onset but only explains part of the observed clinical variability. Genome-wide association studies highlight DNA repair genes in modifying disease onset, but further research is required to identify causal genes and evaluate their tractability as drug targets. To address these gaps and learn important preclinical information, we analysed genome-wide association study data from a large Huntington's disease age-of-onset study (<i>n</i> = 9064), prioritizing robust candidate Huntington's disease modifier genes using bioinformatic approaches and analysing related information for these genes from large-scale human genetic repositories. We supplemented this information with other Huntington's disease-related screens, including exome studies of Huntington's disease onset and high-throughput assessments of mHTT toxicity. To confirm whether Huntington's disease modifiers are shared across repeat expansion disorders, we also analysed age-of-onset genome-wide association study data from X-linked dystonia-parkinsonism caused by a (CCCTCT)<sub>n</sub> expansion. We also studied modifier-related associations with rare diseases to inform potential off-target therapeutic effects and conducted comprehensive phenome-wide studies to identify other traits linked to these genes. Finally, we evaluated the aggregated human genetic evidence and theoretical druggability of the prioritized Huntington's disease modifier genes, including characteristics recently associated with clinical trial stoppage due to safety concerns (i.e. human genetic constraint, number of interacting partners and RNA tissue expression specificity). In total, we annotated and assessed nine robust candidate Huntington's disease modifier genes. Notably, we detected a high correlation (<i>R</i> <sup>2</sup> = 0.78) in top age-of-onset genome-wide association study hits across repeat expansion disorders, emphasizing cross-disorder relevance. Clinical genetic repositories analysis showed DNA repair genes, such as <i>MLH1</i>, <i>PMS2</i> and <i>MSH3</i>, are associated with cancer phenotypes, suggesting potential limitations as drug targets. <i>LIG1</i> and <i>RRM2B</i> were both associated with neurofibrillary tangles, which may provide a link to a potential role in mHTT aggregates, while <i>MSH3</i> was associated with several cortical morphology-related traits relevant to Huntington's disease. Finally, human genetic evidence and theoretical druggability analyses prioritized and ranked modifier genes, with <i>PMS1</i> exhibiting the most favourable profile. Notably, <i>HTT</i> itself ranked poorly as a theoretical drug target, emphasizing the importance of exploring modifier-based alternative targets. In conclusion, our study highlights the importance of human genomic information to prioritize Huntington's disease modifier genes as drug targets, providing a basis for future t","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcae418"},"PeriodicalIF":4.1,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724427/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142973561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-09eCollection Date: 2025-01-01DOI: 10.1093/braincomms/fcaf005
Ming Ann Sim, Yingqi Liao, Siew Pang Chan, Eugene S J Tan, Cheuk Ni Kan, Joyce R Chong, Yuek Ling Chai, Narayanaswamy Venketasubramanian, Boon Yeow Tan, Saima Hilal, Xin Xu, Christopher L H Chen, Mitchell K P Lai
Brain serotonin dysregulation is associated with dementia and neuropsychiatric symptomology. However, the prognostic utility of circulating serotonin levels in detecting features of prodromal dementia including functional decline, cognitive impairment, mild behavioural impairment and brain atrophy remains unclear. In this prospective study of memory clinic subjects followed-up for ≤5 years, dementia-free subjects, classified as having no cognitive impairment or cognitive impairment, no dementia at baseline, underwent annual neuropsychological assessments including Montreal Cognitive Assessment, Global Cognition Z-scores and Clinical Dementia Rating Scale Global Scores (where a ≥ 0.5 increment from baseline denotes functional decline). Mild behavioural impairment was measured using baseline and annual Neuropsychiatric Inventory assessments, while brain atrophy was evaluated using cortical and medial temporal atrophy scores from baseline MRI scans. Baseline serum serotonin was then associated with the neuropsychological and neuroimaging measures cross-sectionally and longitudinally. Furthermore, associations of serum serotonin with cross-sectional brain atrophy scores were studied. Of the 191 elderly subjects included in the study, 63 (33.0%) had no cognitive impairment while 128 (67.0%) had cognitive impairment, no dementia. Fourteen subjects (9.0%) showed baseline mild behavioural impairment. Compared with the highest tertile, subjects within the lowest tertile of serotonin had greater Cortical Atrophy scores (adjusted odds ratio = 2.54, 95% confidence interval=1.22-5.30, P = 0.013). Serotonin levels were not significantly associated with cross-sectional neuropsychological or mild behavioural impairment scores (all P > 0.05). Of the 181 subjects with longitudinal cognitive follow-up (median duration 60.0 months), 56 (30.9%) developed functional decline, while incident mild behavioural impairment occurred in 26/119 (21.8%) subjects. Compared with the highest tertile, lower serotonin levels were associated with higher hazards of functional decline (lowest tertile: adjusted hazards ratio = 2.15, 95% confidence interval = 1.04-4.44, P = 0.039), and incident mild behavioural impairment (lowest tertile: adjusted hazards ratio = 3.82, 95% confidence interval = 1.13-12.87, P = 0.031, middle tertile: adjusted hazards ratio = 3.56, 95% confidence interval =1.05-12.15, P = 0.042). The association between the lowest serotonin tertile and functional decline was mediated via its effect on incident mild behavioural impairment (adjusted odds ratio = 3.96, 95% confidence interval = 1.15-13.61, P = 0.029). In conclusion, low circulating serotonin may be associated with cortical atrophy at baseline, as well as act as an early prognostic marker for functional decline and mild behavioural impairment in elderly, dementia-free subjects.
{"title":"Low serum serotonin is associated with functional decline, mild behavioural impairment and brain atrophy in dementia-free subjects.","authors":"Ming Ann Sim, Yingqi Liao, Siew Pang Chan, Eugene S J Tan, Cheuk Ni Kan, Joyce R Chong, Yuek Ling Chai, Narayanaswamy Venketasubramanian, Boon Yeow Tan, Saima Hilal, Xin Xu, Christopher L H Chen, Mitchell K P Lai","doi":"10.1093/braincomms/fcaf005","DOIUrl":"https://doi.org/10.1093/braincomms/fcaf005","url":null,"abstract":"<p><p>Brain serotonin dysregulation is associated with dementia and neuropsychiatric symptomology. However, the prognostic utility of circulating serotonin levels in detecting features of prodromal dementia including functional decline, cognitive impairment, mild behavioural impairment and brain atrophy remains unclear. In this prospective study of memory clinic subjects followed-up for ≤5 years, dementia-free subjects, classified as having no cognitive impairment or cognitive impairment, no dementia at baseline, underwent annual neuropsychological assessments including Montreal Cognitive Assessment, Global Cognition <i>Z-</i>scores and Clinical Dementia Rating Scale Global Scores (where a ≥ 0.5 increment from baseline denotes functional decline). Mild behavioural impairment was measured using baseline and annual Neuropsychiatric Inventory assessments, while brain atrophy was evaluated using cortical and medial temporal atrophy scores from baseline MRI scans. Baseline serum serotonin was then associated with the neuropsychological and neuroimaging measures cross-sectionally and longitudinally. Furthermore, associations of serum serotonin with cross-sectional brain atrophy scores were studied. Of the 191 elderly subjects included in the study, 63 (33.0%) had no cognitive impairment while 128 (67.0%) had cognitive impairment, no dementia. Fourteen subjects (9.0%) showed baseline mild behavioural impairment. Compared with the highest tertile, subjects within the lowest tertile of serotonin had greater Cortical Atrophy scores (adjusted odds ratio = 2.54, 95% confidence interval=1.22-5.30, <i>P</i> = 0.013). Serotonin levels were not significantly associated with cross-sectional neuropsychological or mild behavioural impairment scores (all <i>P</i> > 0.05). Of the 181 subjects with longitudinal cognitive follow-up (median duration 60.0 months), 56 (30.9%) developed functional decline, while incident mild behavioural impairment occurred in 26/119 (21.8%) subjects. Compared with the highest tertile, lower serotonin levels were associated with higher hazards of functional decline (lowest tertile: adjusted hazards ratio = 2.15, 95% confidence interval = 1.04-4.44, <i>P</i> = 0.039), and incident mild behavioural impairment (lowest tertile: adjusted hazards ratio = 3.82, 95% confidence interval = 1.13-12.87, <i>P</i> = 0.031, middle tertile: adjusted hazards ratio = 3.56, 95% confidence interval =1.05-12.15, <i>P</i> = 0.042). The association between the lowest serotonin tertile and functional decline was mediated via its effect on incident mild behavioural impairment (adjusted odds ratio = 3.96, 95% confidence interval = 1.15-13.61, <i>P</i> = 0.029). In conclusion, low circulating serotonin may be associated with cortical atrophy at baseline, as well as act as an early prognostic marker for functional decline and mild behavioural impairment in elderly, dementia-free subjects.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcaf005"},"PeriodicalIF":4.1,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733688/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143018207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-08eCollection Date: 2025-01-01DOI: 10.1093/braincomms/fcae427
Michael Gurevich, Rina Zilkha-Falb, Jia Sherman, Maxime Usdin, Catarina Raposo, Licinio Craveiro, Polina Sonis, David Magalashvili, Shay Menascu, Mark Dolev, Anat Achiron
Primary progressive multiple sclerosis (PPMS) affects 10-15% of multiple sclerosis patients and presents significant variability in the rate of disability progression. Identifying key biological features and patients at higher risk for fast progression is crucial to develop and optimize treatment strategies. Peripheral blood cell transcriptome has the potential to provide valuable information to predict patients' outcomes. In this study, we utilized a machine learning framework applied to the baseline blood transcriptional profiles and brain MRI radiological enumerations to develop prognostic models. These models aim to identify PPMS patients likely to experience significant disease progression and who could benefit from early treatment intervention. RNA-sequence analysis was performed on total RNA extracted from peripheral blood mononuclear cells of PPMS patients in the placebo arm of the ORATORIO clinical trial (NCT01412333), using Illumina NovaSeq S2. Cross-validation algorithms from Partek Genome Suite (www.partek.com) were applied to predict disability progression and brain volume loss over 120 weeks. For disability progression prediction, we analysed blood RNA samples from 135 PPMS patients (61 females and 74 males) with a mean ± standard error age of 44.0 ± 0.7 years, disease duration of 5.9 ± 0.32 years and a median baseline Expanded Disability Status Scale (EDSS) score of 4.3 (range 3.5-6.5). Over the 120-week study, 39.3% (53/135) of patients reached the disability progression end-point, with an average EDSS score increase of 1.3 ± 0.16. For brain volume loss prediction, blood RNA samples from 94 PPMS patients (41 females and 53 males), mean ± standard error age of 43.7 ± 0.7 years and a median baseline EDSS of 4.0 (range 3.0-6.5) were used. Sixty-seven per cent (63/94) experienced significant brain volume loss. For the prediction of disability progression, we developed a two-level procedure. In the first level, a 10-gene predictor achieved a classification accuracy of 70.9 ± 4.5% in identifying patients reaching the disability end-point within 120 weeks. In the second level, a four-gene classifier distinguished between fast and slow disability progression with a 506-day cut-off, achieving 74.1 ± 5.2% accuracy. For brain volume loss prediction, a 12-gene classifier reached an accuracy of 70.2 ± 6.7%, which improved to 74.1 ± 5.2% when combined with baseline brain MRI measurements. In conclusion, our study demonstrates that blood transcriptome data, alone or combined with baseline brain MRI metrics, can effectively predict disability progression and brain volume loss in PPMS patients.
{"title":"Machine learning-based prediction of disease progression in primary progressive multiple sclerosis.","authors":"Michael Gurevich, Rina Zilkha-Falb, Jia Sherman, Maxime Usdin, Catarina Raposo, Licinio Craveiro, Polina Sonis, David Magalashvili, Shay Menascu, Mark Dolev, Anat Achiron","doi":"10.1093/braincomms/fcae427","DOIUrl":"https://doi.org/10.1093/braincomms/fcae427","url":null,"abstract":"<p><p>Primary progressive multiple sclerosis (PPMS) affects 10-15% of multiple sclerosis patients and presents significant variability in the rate of disability progression. Identifying key biological features and patients at higher risk for fast progression is crucial to develop and optimize treatment strategies. Peripheral blood cell transcriptome has the potential to provide valuable information to predict patients' outcomes. In this study, we utilized a machine learning framework applied to the baseline blood transcriptional profiles and brain MRI radiological enumerations to develop prognostic models. These models aim to identify PPMS patients likely to experience significant disease progression and who could benefit from early treatment intervention. RNA-sequence analysis was performed on total RNA extracted from peripheral blood mononuclear cells of PPMS patients in the placebo arm of the ORATORIO clinical trial (NCT01412333), using Illumina NovaSeq S2. Cross-validation algorithms from Partek Genome Suite (www.partek.com) were applied to predict disability progression and brain volume loss over 120 weeks. For disability progression prediction, we analysed blood RNA samples from 135 PPMS patients (61 females and 74 males) with a mean ± standard error age of 44.0 ± 0.7 years, disease duration of 5.9 ± 0.32 years and a median baseline Expanded Disability Status Scale (EDSS) score of 4.3 (range 3.5-6.5). Over the 120-week study, 39.3% (53/135) of patients reached the disability progression end-point, with an average EDSS score increase of 1.3 ± 0.16. For brain volume loss prediction, blood RNA samples from 94 PPMS patients (41 females and 53 males), mean ± standard error age of 43.7 ± 0.7 years and a median baseline EDSS of 4.0 (range 3.0-6.5) were used. Sixty-seven per cent (63/94) experienced significant brain volume loss. For the prediction of disability progression, we developed a two-level procedure. In the first level, a 10-gene predictor achieved a classification accuracy of 70.9 ± 4.5% in identifying patients reaching the disability end-point within 120 weeks. In the second level, a four-gene classifier distinguished between fast and slow disability progression with a 506-day cut-off, achieving 74.1 ± 5.2% accuracy. For brain volume loss prediction, a 12-gene classifier reached an accuracy of 70.2 ± 6.7%, which improved to 74.1 ± 5.2% when combined with baseline brain MRI measurements. In conclusion, our study demonstrates that blood transcriptome data, alone or combined with baseline brain MRI metrics, can effectively predict disability progression and brain volume loss in PPMS patients.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 1","pages":"fcae427"},"PeriodicalIF":4.1,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707605/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142960253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}