Hydrothermal synthesis and characterization of samarium molybdate nanosheets modified multi-walled carbon nanotubes: Real-time analysis of dimetridazole in environmental and biological samples

IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Chemosphere Pub Date : 2024-11-01 DOI:10.1016/j.chemosphere.2024.143616
Yanting Li , Lihua Deng , Yaxi Jiang , Xinhui Jiang
{"title":"Hydrothermal synthesis and characterization of samarium molybdate nanosheets modified multi-walled carbon nanotubes: Real-time analysis of dimetridazole in environmental and biological samples","authors":"Yanting Li ,&nbsp;Lihua Deng ,&nbsp;Yaxi Jiang ,&nbsp;Xinhui Jiang","doi":"10.1016/j.chemosphere.2024.143616","DOIUrl":null,"url":null,"abstract":"<div><div>Dimetridazole (DMZ) is commonly used as a veterinary drug, resulting in high emissions and environmental pollution and DMZ residues are carcinogenic, genotoxic, and mutagenic to humans. Therefore, it is essential to construct a fast, sensitive and simple sensor to monitor DMZ. In this study, samarium molybdate nanosheets modified multi-walled carbon nanotube composites (SmM/MWCNT) were synthesized to modify GCE for detecting DMZ. The SmM/MWCNT material was also characterized by various analytical and spectroscopic techniques, such as FE-SEM, HRTEM, FT-IR, Raman spectroscopy, XRD, elemental mapping and XPS, to demonstrate the successful synthesis of the composite. Besides, the electrochemical behavior of SmM/MWCNT/GCE for DMZ was also investigated using CV and DPV, and the modified electrode showed good electrochemical sensing performance for DMZ with a low detection limit (0.08 μM), a wide linear range (0.1∼1000 μM), and excellent selectivity. Finally, the SmM/MWCNT/GCE was successfully applied to detect DMZ in environmental and biological samples, and satisfactory recoveries (95%∼105%) were obtained. To the best of our knowledge, the synthesis of SmM/MWCNT and its application in electrochemical sensors are reported for the first time, which demonstrates that it can provide a new route for real-time monitoring of environmental pollutants.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653524025165","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Dimetridazole (DMZ) is commonly used as a veterinary drug, resulting in high emissions and environmental pollution and DMZ residues are carcinogenic, genotoxic, and mutagenic to humans. Therefore, it is essential to construct a fast, sensitive and simple sensor to monitor DMZ. In this study, samarium molybdate nanosheets modified multi-walled carbon nanotube composites (SmM/MWCNT) were synthesized to modify GCE for detecting DMZ. The SmM/MWCNT material was also characterized by various analytical and spectroscopic techniques, such as FE-SEM, HRTEM, FT-IR, Raman spectroscopy, XRD, elemental mapping and XPS, to demonstrate the successful synthesis of the composite. Besides, the electrochemical behavior of SmM/MWCNT/GCE for DMZ was also investigated using CV and DPV, and the modified electrode showed good electrochemical sensing performance for DMZ with a low detection limit (0.08 μM), a wide linear range (0.1∼1000 μM), and excellent selectivity. Finally, the SmM/MWCNT/GCE was successfully applied to detect DMZ in environmental and biological samples, and satisfactory recoveries (95%∼105%) were obtained. To the best of our knowledge, the synthesis of SmM/MWCNT and its application in electrochemical sensors are reported for the first time, which demonstrates that it can provide a new route for real-time monitoring of environmental pollutants.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钼酸钐纳米片修饰多壁碳纳米管的水热合成与表征:实时分析环境和生物样品中的二甲哒唑。
二甲硝咪唑(DMZ)是一种常用的兽药,会造成大量排放和环境污染,而且 DMZ 残留物对人体具有致癌、遗传毒性和诱变性。因此,构建一种快速、灵敏、简单的传感器来监测 DMZ 至关重要。本研究合成了钼酸钐纳米片修饰多壁碳纳米管复合材料(SmM/MWCNT)来修饰 GCE,用于检测 DMZ。研究人员还利用各种分析和光谱技术,如 FE-SEM、HRTEM、傅立叶变换红外光谱、拉曼光谱、XRD、元素图谱和 XPS 等,对 SmM/MWCNT 材料进行了表征,以证明该复合材料的成功合成。此外,还利用 CV 和 DPV 研究了 SmM/MWCNT /GCE 对 DMZ 的电化学行为,结果表明改性电极对 DMZ 具有良好的电化学传感性能,检出限低(0.08 μM),线性范围宽(0.1∼1000 μM),选择性好。最后,SmM/MWCNT/GCE 被成功应用于环境和生物样品中 DMZ 的检测,并获得了令人满意的回收率(95%∼105%)。据我们所知,SmM/MWCNT 的合成及其在电化学传感器中的应用尚属首次报道,这为环境污染物的实时监测提供了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemosphere
Chemosphere 环境科学-环境科学
CiteScore
15.80
自引率
8.00%
发文量
4975
审稿时长
3.4 months
期刊介绍: Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.
期刊最新文献
Integration of Fe-MOF-laccase-magnetic biochar: From Rational Designing of a biocatalyst to aflatoxin B1 decontamination of peanut oil Neurotoxicology of warfare arsenical, diphenylarsinic acid in humans and experimental models Role of molybdenum compounds in enhancing denitrification: Structure-activity relationship and the regulatory mechanisms Percutaneous absorption of two bisphenol a analogues, BPAF and TGSA: Novel In vitro data from human skin High removal of PS and PET microplastics from tap water by using Fe2O3 porous microparticles and photothermal irradiation with NIR light
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1