Hydrothermal synthesis and characterization of samarium molybdate nanosheets modified multi-walled carbon nanotubes: Real-time analysis of dimetridazole in environmental and biological samples
Yanting Li , Lihua Deng , Yaxi Jiang , Xinhui Jiang
{"title":"Hydrothermal synthesis and characterization of samarium molybdate nanosheets modified multi-walled carbon nanotubes: Real-time analysis of dimetridazole in environmental and biological samples","authors":"Yanting Li , Lihua Deng , Yaxi Jiang , Xinhui Jiang","doi":"10.1016/j.chemosphere.2024.143616","DOIUrl":null,"url":null,"abstract":"<div><div>Dimetridazole (DMZ) is commonly used as a veterinary drug, resulting in high emissions and environmental pollution and DMZ residues are carcinogenic, genotoxic, and mutagenic to humans. Therefore, it is essential to construct a fast, sensitive and simple sensor to monitor DMZ. In this study, samarium molybdate nanosheets modified multi-walled carbon nanotube composites (SmM/MWCNT) were synthesized to modify GCE for detecting DMZ. The SmM/MWCNT material was also characterized by various analytical and spectroscopic techniques, such as FE-SEM, HRTEM, FT-IR, Raman spectroscopy, XRD, elemental mapping and XPS, to demonstrate the successful synthesis of the composite. Besides, the electrochemical behavior of SmM/MWCNT/GCE for DMZ was also investigated using CV and DPV, and the modified electrode showed good electrochemical sensing performance for DMZ with a low detection limit (0.08 μM), a wide linear range (0.1∼1000 μM), and excellent selectivity. Finally, the SmM/MWCNT/GCE was successfully applied to detect DMZ in environmental and biological samples, and satisfactory recoveries (95%∼105%) were obtained. To the best of our knowledge, the synthesis of SmM/MWCNT and its application in electrochemical sensors are reported for the first time, which demonstrates that it can provide a new route for real-time monitoring of environmental pollutants.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653524025165","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Dimetridazole (DMZ) is commonly used as a veterinary drug, resulting in high emissions and environmental pollution and DMZ residues are carcinogenic, genotoxic, and mutagenic to humans. Therefore, it is essential to construct a fast, sensitive and simple sensor to monitor DMZ. In this study, samarium molybdate nanosheets modified multi-walled carbon nanotube composites (SmM/MWCNT) were synthesized to modify GCE for detecting DMZ. The SmM/MWCNT material was also characterized by various analytical and spectroscopic techniques, such as FE-SEM, HRTEM, FT-IR, Raman spectroscopy, XRD, elemental mapping and XPS, to demonstrate the successful synthesis of the composite. Besides, the electrochemical behavior of SmM/MWCNT/GCE for DMZ was also investigated using CV and DPV, and the modified electrode showed good electrochemical sensing performance for DMZ with a low detection limit (0.08 μM), a wide linear range (0.1∼1000 μM), and excellent selectivity. Finally, the SmM/MWCNT/GCE was successfully applied to detect DMZ in environmental and biological samples, and satisfactory recoveries (95%∼105%) were obtained. To the best of our knowledge, the synthesis of SmM/MWCNT and its application in electrochemical sensors are reported for the first time, which demonstrates that it can provide a new route for real-time monitoring of environmental pollutants.
期刊介绍:
Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.