Comparison of urinary 3-hydroxybenzo(a)Pyrene (3-OHBaP) and trans-anti-7,8,9,10-tetrahydroxy-7,8,9,10-tetrahydrobenzo(a)Pyrene (TetraolBaP) as biomarkers of exposure to carcinogenic BaP
{"title":"Comparison of urinary 3-hydroxybenzo(a)Pyrene (3-OHBaP) and trans-anti-7,8,9,10-tetrahydroxy-7,8,9,10-tetrahydrobenzo(a)Pyrene (TetraolBaP) as biomarkers of exposure to carcinogenic BaP","authors":"","doi":"10.1016/j.ijheh.2024.114476","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>Biomonitoring of exposure to carcinogenic Benzo(a)Pyrene is generally based on measurement of urinary 3-hydroxybenzo(a)pyrene (3-OHBaP), but its analysis is complex and only reflects the BaP detoxification pathway. TetraolBaP, another BaP metabolite resulting from the metabolic activation pathway, is now available but has not yet been studied in occupational settings or compared with 3-OHBaP.</div></div><div><h3>Methods</h3><div>Biomonitoring was carried out on 118 subjects working in the aluminium smelting industry. 3 urine samples were collected from each subject at the beginning and end of the working week. Pyrene metabolite (1-hydroxypyrene) and the two BaP biomarkers (3-OHBaP and TetraolBaP) were analysed using LC-Fluorescence and GC-NCI-MS-MS.</div></div><div><h3>Results</h3><div>The workers studied were found to be highly exposed, with 1-OHP and 3-OHBaP frequently exceeding maximum recommended values in occupational settings. Maximum concentrations were measured at end of shift+16h for all biomarkers, highlighting dermal exposure and/or temporary storage. Correlations were strong between 1-OHP and 3-OHBaP (r = 0.68–0.75) as well as between 3-OHBaP and TetraolBaP (r = 0.67–0.78), and moderate between 1-OHP and TetraolBaP (r = 0.59–0.76). While TetraolBaP levels were higher at low PAH exposures, TetraolBaP increased much more slowly at high exposures, indicating progressive saturation of the bioactivation pathway. The [3-OHBaP]/[TetraolBaP] ratio was found to be significantly lower in chronically exposed workers. Urinary TetraolBaP levels corresponding to 1-OHP (2.5 μg/L or 1 μmol/mol creatinine) or 3-OHBaP (0.4 nmol/mol creatinine) guidance values were found to range between 0.84 and 0.95 nmol/mol creatinine.</div></div><div><h3>Conclusions</h3><div>TetraolBaP, resulting from carcinogenic BaP's metabolic activation pathway, was shown to be a diagnostically specific and sensitive biomarker for determining subjects' toxic internal exposure to PAHs in different contexts (occupational settings, environment) and assessing health risks.</div></div>","PeriodicalId":13994,"journal":{"name":"International journal of hygiene and environmental health","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of hygiene and environmental health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1438463924001573","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Biomonitoring of exposure to carcinogenic Benzo(a)Pyrene is generally based on measurement of urinary 3-hydroxybenzo(a)pyrene (3-OHBaP), but its analysis is complex and only reflects the BaP detoxification pathway. TetraolBaP, another BaP metabolite resulting from the metabolic activation pathway, is now available but has not yet been studied in occupational settings or compared with 3-OHBaP.
Methods
Biomonitoring was carried out on 118 subjects working in the aluminium smelting industry. 3 urine samples were collected from each subject at the beginning and end of the working week. Pyrene metabolite (1-hydroxypyrene) and the two BaP biomarkers (3-OHBaP and TetraolBaP) were analysed using LC-Fluorescence and GC-NCI-MS-MS.
Results
The workers studied were found to be highly exposed, with 1-OHP and 3-OHBaP frequently exceeding maximum recommended values in occupational settings. Maximum concentrations were measured at end of shift+16h for all biomarkers, highlighting dermal exposure and/or temporary storage. Correlations were strong between 1-OHP and 3-OHBaP (r = 0.68–0.75) as well as between 3-OHBaP and TetraolBaP (r = 0.67–0.78), and moderate between 1-OHP and TetraolBaP (r = 0.59–0.76). While TetraolBaP levels were higher at low PAH exposures, TetraolBaP increased much more slowly at high exposures, indicating progressive saturation of the bioactivation pathway. The [3-OHBaP]/[TetraolBaP] ratio was found to be significantly lower in chronically exposed workers. Urinary TetraolBaP levels corresponding to 1-OHP (2.5 μg/L or 1 μmol/mol creatinine) or 3-OHBaP (0.4 nmol/mol creatinine) guidance values were found to range between 0.84 and 0.95 nmol/mol creatinine.
Conclusions
TetraolBaP, resulting from carcinogenic BaP's metabolic activation pathway, was shown to be a diagnostically specific and sensitive biomarker for determining subjects' toxic internal exposure to PAHs in different contexts (occupational settings, environment) and assessing health risks.
期刊介绍:
The International Journal of Hygiene and Environmental Health serves as a multidisciplinary forum for original reports on exposure assessment and the reactions to and consequences of human exposure to the biological, chemical, and physical environment. Research reports, short communications, reviews, scientific comments, technical notes, and editorials will be peer-reviewed before acceptance for publication. Priority will be given to articles on epidemiological aspects of environmental toxicology, health risk assessments, susceptible (sub) populations, sanitation and clean water, human biomonitoring, environmental medicine, and public health aspects of exposure-related outcomes.