{"title":"Deep learning and AI in reducing magnetic resonance imaging scanning time: advantages and pitfalls in clinical practice.","authors":"Giovanni Foti, Chiara Longo","doi":"10.5114/pjr/192822","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic resonance imaging (MRI) is a powerful imaging modality, but one of its drawbacks is its relatively long scanning time to acquire high-resolution images. Reducing the scanning time has become a critical area of focus in MRI, aiming to enhance patient comfort, reduce motion artifacts, and increase MRI throughput. In the past 5 years, artificial intelligence (AI)-based algorithms, particularly deep learning models, have been developed to reconstruct high-resolution images from significantly fewer data points. These new techniques significantly enhance MRI efficiency, improve patient comfort and lower patient motion artifacts. Improving MRI throughput with lower scanning duration increases accessibility, potentially reducing the need for additional MRI machines and associated costs. Several fields can benefit from shortened protocols, especially for routine exams. In oncologic imaging, faster MRI scans can facilitate more regular monitoring of cancer patients. In patients suffering from neurological disorders, rapid brain imaging can aid in the quick assessment of conditions like stroke, multiple sclerosis, and epilepsy, improving patient outcomes. In chronic inflammatory disease, faster imaging may help in reducing the interval between imaging to better check therapy outcomes. Additionally, reducing scanning time could effectively help MRI to play a role in emergency medicine and acute conditions such as trauma or acute ischaemic stroke. The purpose of this paper is to describe and discuss the advantages and disadvantages of introducing deep learning reconstruction techniques to reduce MRI scanning times in clinical practice.</p>","PeriodicalId":94174,"journal":{"name":"Polish journal of radiology","volume":"89 ","pages":"e443-e451"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11497590/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish journal of radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5114/pjr/192822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic resonance imaging (MRI) is a powerful imaging modality, but one of its drawbacks is its relatively long scanning time to acquire high-resolution images. Reducing the scanning time has become a critical area of focus in MRI, aiming to enhance patient comfort, reduce motion artifacts, and increase MRI throughput. In the past 5 years, artificial intelligence (AI)-based algorithms, particularly deep learning models, have been developed to reconstruct high-resolution images from significantly fewer data points. These new techniques significantly enhance MRI efficiency, improve patient comfort and lower patient motion artifacts. Improving MRI throughput with lower scanning duration increases accessibility, potentially reducing the need for additional MRI machines and associated costs. Several fields can benefit from shortened protocols, especially for routine exams. In oncologic imaging, faster MRI scans can facilitate more regular monitoring of cancer patients. In patients suffering from neurological disorders, rapid brain imaging can aid in the quick assessment of conditions like stroke, multiple sclerosis, and epilepsy, improving patient outcomes. In chronic inflammatory disease, faster imaging may help in reducing the interval between imaging to better check therapy outcomes. Additionally, reducing scanning time could effectively help MRI to play a role in emergency medicine and acute conditions such as trauma or acute ischaemic stroke. The purpose of this paper is to describe and discuss the advantages and disadvantages of introducing deep learning reconstruction techniques to reduce MRI scanning times in clinical practice.