Collaborative Filtering for the Imputation of Patient Reported Outcomes.

Eric Ababio Anyimadu, Clifton David Fuller, Xinhua Zhang, G Elisabeta Marai, Guadalupe Canahuate
{"title":"Collaborative Filtering for the Imputation of Patient Reported Outcomes.","authors":"Eric Ababio Anyimadu, Clifton David Fuller, Xinhua Zhang, G Elisabeta Marai, Guadalupe Canahuate","doi":"10.1007/978-3-031-68309-1_20","DOIUrl":null,"url":null,"abstract":"<p><p>This study addresses the prevalent issue of missing data in patient-reported outcome datasets, particularly focusing on head and neck cancer patient symptom ratings sourced from the MD Anderson Symptom Inventory. Given that many data mining and machine learning algorithms necessitate complete datasets, the accurate imputation of missing data as an initial step becomes crucial. In this study we propose, for the first time, the use of collaborative filtering for imputing missing head and neck cancer patient symptom ratings. Two configurations of collaborative filtering, namely patient-based and symptom-based, leverage known ratings to infer the missing ones. Additionally, this study compares the performance of collaborative filtering with alternative imputation methods such as Multiple Imputation by Chained Equations, Nearest Neighbor Imputation, and Linear interpolation. Performance is compared using Root Mean Squared Error and Mean Absolute Error metrics. Findings demonstrate that collaborative filtering is a viable and comparatively superior approach for imputing missing patient symptom data.</p>","PeriodicalId":520265,"journal":{"name":"Database and expert systems applications : 35th International Conference, DEXA 2024, Naples, Italy, August 26-28, 2024, Proceedings. Part I. Database and Expert Systems Applications Conference (35th : 2024 : Naples, Italy)","volume":"14910 ","pages":"231-248"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503500/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Database and expert systems applications : 35th International Conference, DEXA 2024, Naples, Italy, August 26-28, 2024, Proceedings. Part I. Database and Expert Systems Applications Conference (35th : 2024 : Naples, Italy)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-68309-1_20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the prevalent issue of missing data in patient-reported outcome datasets, particularly focusing on head and neck cancer patient symptom ratings sourced from the MD Anderson Symptom Inventory. Given that many data mining and machine learning algorithms necessitate complete datasets, the accurate imputation of missing data as an initial step becomes crucial. In this study we propose, for the first time, the use of collaborative filtering for imputing missing head and neck cancer patient symptom ratings. Two configurations of collaborative filtering, namely patient-based and symptom-based, leverage known ratings to infer the missing ones. Additionally, this study compares the performance of collaborative filtering with alternative imputation methods such as Multiple Imputation by Chained Equations, Nearest Neighbor Imputation, and Linear interpolation. Performance is compared using Root Mean Squared Error and Mean Absolute Error metrics. Findings demonstrate that collaborative filtering is a viable and comparatively superior approach for imputing missing patient symptom data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协作过滤法用于患者报告结果的推算。
本研究探讨了患者报告结果数据集中普遍存在的数据缺失问题,尤其关注来自 MD 安德森症状量表的头颈部癌症患者症状评分。鉴于许多数据挖掘和机器学习算法都需要完整的数据集,因此作为初始步骤对缺失数据进行准确估算变得至关重要。在本研究中,我们首次提出了使用协同过滤法对缺失的头颈部癌症患者症状评分进行归因。基于患者和基于症状的两种协同过滤配置利用已知评分来推断缺失评分。此外,本研究还比较了协同过滤法与其他估算方法的性能,如连锁方程多重估算法、近邻估算法和线性插值法。性能比较采用了均方根误差和绝对平均误差指标。研究结果表明,对于缺失的患者症状数据,协同过滤是一种可行且相对优越的估算方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Collaborative Filtering for the Imputation of Patient Reported Outcomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1