Metal Organic Frameworks Based Wearable and Point-of-Care Electrochemical Sensors for Healthcare Monitoring.

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL Biosensors-Basel Pub Date : 2024-10-10 DOI:10.3390/bios14100492
K Theyagarajan, Young-Joon Kim
{"title":"Metal Organic Frameworks Based Wearable and Point-of-Care Electrochemical Sensors for Healthcare Monitoring.","authors":"K Theyagarajan, Young-Joon Kim","doi":"10.3390/bios14100492","DOIUrl":null,"url":null,"abstract":"<p><p>The modern healthcare system strives to provide patients with more comfortable and less invasive experiences, focusing on noninvasive and painless diagnostic and treatment methods. A key priority is the early diagnosis of life-threatening diseases, which can significantly improve patient outcomes by enabling treatment at earlier stages. While most patients must undergo diagnostic procedures before beginning treatment, many existing methods are invasive, time-consuming, and inconvenient. To address these challenges, electrochemical-based wearable and point-of-care (PoC) sensing devices have emerged, playing a crucial role in the noninvasive, continuous, periodic, and remote monitoring of key biomarkers. Due to their numerous advantages, several wearable and PoC devices have been developed. In this focused review, we explore the advancements in metal-organic frameworks (MOFs)-based wearable and PoC devices. MOFs are porous crystalline materials that are cost-effective, biocompatible, and can be synthesized sustainably on a large scale, making them promising candidates for sensor development. However, research on MOF-based wearable and PoC sensors remains limited, and no comprehensive review has yet to synthesize the existing knowledge in this area. This review aims to fill that gap by emphasizing the design of materials, fabrication methodologies, sensing mechanisms, device construction, and real-world applicability of these sensors. Additionally, we underscore the importance and potential of MOF-based wearable and PoC sensors for advancing healthcare technologies. In conclusion, this review sheds light on the current state of the art, the challenges faced, and the opportunities ahead in MOF-based wearable and PoC sensing technologies.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506055/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14100492","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The modern healthcare system strives to provide patients with more comfortable and less invasive experiences, focusing on noninvasive and painless diagnostic and treatment methods. A key priority is the early diagnosis of life-threatening diseases, which can significantly improve patient outcomes by enabling treatment at earlier stages. While most patients must undergo diagnostic procedures before beginning treatment, many existing methods are invasive, time-consuming, and inconvenient. To address these challenges, electrochemical-based wearable and point-of-care (PoC) sensing devices have emerged, playing a crucial role in the noninvasive, continuous, periodic, and remote monitoring of key biomarkers. Due to their numerous advantages, several wearable and PoC devices have been developed. In this focused review, we explore the advancements in metal-organic frameworks (MOFs)-based wearable and PoC devices. MOFs are porous crystalline materials that are cost-effective, biocompatible, and can be synthesized sustainably on a large scale, making them promising candidates for sensor development. However, research on MOF-based wearable and PoC sensors remains limited, and no comprehensive review has yet to synthesize the existing knowledge in this area. This review aims to fill that gap by emphasizing the design of materials, fabrication methodologies, sensing mechanisms, device construction, and real-world applicability of these sensors. Additionally, we underscore the importance and potential of MOF-based wearable and PoC sensors for advancing healthcare technologies. In conclusion, this review sheds light on the current state of the art, the challenges faced, and the opportunities ahead in MOF-based wearable and PoC sensing technologies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于金属有机框架的可穿戴和护理点电化学传感器用于医疗保健监测。
现代医疗系统致力于为患者提供更舒适、创伤更小的体验,重点关注无创、无痛的诊断和治疗方法。当务之急是对危及生命的疾病进行早期诊断,通过早期治疗可显著改善患者的预后。虽然大多数患者在开始治疗前都必须接受诊断程序,但许多现有方法都是侵入性的、耗时的和不方便的。为了应对这些挑战,基于电化学的可穿戴设备和护理点(PoC)传感设备应运而生,在无创、连续、定期和远程监测关键生物标志物方面发挥着至关重要的作用。由于可穿戴设备和护理点传感设备具有众多优点,目前已开发出多种可穿戴设备和护理点传感设备。在这篇重点综述中,我们将探讨基于金属有机框架(MOFs)的可穿戴设备和 PoC 设备的进展。MOFs 是一种多孔结晶材料,具有成本效益高、生物相容性好、可持续大规模合成等特点,因此很有希望成为传感器开发的候选材料。然而,有关基于 MOF 的可穿戴和 PoC 传感器的研究仍然有限,而且还没有全面综述该领域的现有知识。本综述旨在通过强调这些传感器的材料设计、制造方法、传感机制、设备构造和实际应用性来填补这一空白。此外,我们还强调了基于 MOF 的可穿戴和 PoC 传感器在推动医疗保健技术发展方面的重要性和潜力。总之,本综述揭示了基于 MOF 的可穿戴和 PoC 传感技术的技术现状、面临的挑战和未来的机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
Ru@UiO-66-NH2 MOFs-Based Dual Emission Ratiometric Fluorescence for Sensitive Sensing of Arginine. Source Localization and Classification of Pulmonary Valve-Originated Electrocardiograms Using Volume Conductor Modeling with Anatomical Models. Prediction of Thrombus Formation within an Oxygenator via Bioimpedance Analysis. Electrochemical Analysis of Amyloid Plaques and ApoE4 with Chitosan-Coated Gold Nanostars for Alzheimer's Detection. Enhancing Target Detection: A Fluorescence-Based Streptavidin-Bead Displacement Assay.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1