Alexander Tkach, Ricardo Serrazina, Luis Pereira, Ana M. O. R. Senos and Paula M. Vilarinho
{"title":"Unveiling the electrical performance of flash-sintered potassium sodium niobate†","authors":"Alexander Tkach, Ricardo Serrazina, Luis Pereira, Ana M. O. R. Senos and Paula M. Vilarinho","doi":"10.1039/D4TC01702A","DOIUrl":null,"url":null,"abstract":"<p >In the context of sensor, actuator, and energy harvesting applications, lead-free ferroelectric K<small><sub>0.5</sub></small>Na<small><sub>0.5</sub></small>NbO<small><sub>3</sub></small> (KNN) ceramics offer several advantages, including a high transition temperature and an elevated piezoelectric coefficient. However, producing single-phase KNN ceramics at a low thermal budget requires alternative sintering processes such as electric-field- and current-assisted flash sintering. Furthermore, the electrical properties of flash-sintered ferroelectrics are rarely disclosed. Here, based on systematic dielectric and ferroelectric, impedance spectroscopy and DC conductivity measurements, we demonstrate that the electrical performance of flash-sintered KNN is quite dependent on its thermal history, in contrast to the conventionally sintered one. Simultaneously, we demonstrate the successful production of high-performance KNN ceramics with high polarization, dielectric permittivity, Curie temperature, and piezoelectric coefficient using flash sintering, coupled with a carefully chosen post-sintering electrode curing step. Supported by impedance spectroscopy results, indicative of enhanced oxygen vacancy content in flash-sintered KNN, we postulate that post-sintering heat treatment and low-thermal-budget flash sintering are equally critical for KNN applications, complementing the benefits of reducing lattice defects and enhancing electroceramic performance. Our results demonstrate a pathway towards alternative sintering of electroceramics and offer opportunities to control performance.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc01702a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the context of sensor, actuator, and energy harvesting applications, lead-free ferroelectric K0.5Na0.5NbO3 (KNN) ceramics offer several advantages, including a high transition temperature and an elevated piezoelectric coefficient. However, producing single-phase KNN ceramics at a low thermal budget requires alternative sintering processes such as electric-field- and current-assisted flash sintering. Furthermore, the electrical properties of flash-sintered ferroelectrics are rarely disclosed. Here, based on systematic dielectric and ferroelectric, impedance spectroscopy and DC conductivity measurements, we demonstrate that the electrical performance of flash-sintered KNN is quite dependent on its thermal history, in contrast to the conventionally sintered one. Simultaneously, we demonstrate the successful production of high-performance KNN ceramics with high polarization, dielectric permittivity, Curie temperature, and piezoelectric coefficient using flash sintering, coupled with a carefully chosen post-sintering electrode curing step. Supported by impedance spectroscopy results, indicative of enhanced oxygen vacancy content in flash-sintered KNN, we postulate that post-sintering heat treatment and low-thermal-budget flash sintering are equally critical for KNN applications, complementing the benefits of reducing lattice defects and enhancing electroceramic performance. Our results demonstrate a pathway towards alternative sintering of electroceramics and offer opportunities to control performance.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.