{"title":"Stacking-tuned quantum anomalous Hall effect and multi-phase transition in Kagome lattice V2Se3†","authors":"Lixin Zhang, Naibin Wang, Xiuwen Zhao, Guichao Hu, Junfeng Ren and Xiaobo Yuan","doi":"10.1039/D4TC03058C","DOIUrl":null,"url":null,"abstract":"<p >The physical properties induced by layer stacking in two dimensional materials are fascinating. Here, a hexagonal Kagome lattice V<small><sub>2</sub></small>Se<small><sub>3</sub></small> is constructed to investigate the dependence of the quantum anomalous Hall effect (QAHE) and the phase transition on the different stacking. Based on first principles calculations, the tight-binding model, and the irreducible representations, it is found that QAHE with a Chern number of 1 can be realized in the V<small><sub>2</sub></small>Se<small><sub>3</sub></small> monolayer. While the V<small><sub>2</sub></small>Se<small><sub>3</sub></small> bilayer is constructed, the interlayer interaction affects the Dirac cone, so QAHE with Chern number changes from −1 to 2 can be obtained by changing the different stacking patterns. On the other hand, applying biaxial tensile strain and changing stacking patterns in the V<small><sub>2</sub></small>Se<small><sub>3</sub></small> bilayer will affect the d orbitals of the V atoms. In bilayer V<small><sub>2</sub></small>Se<small><sub>3</sub></small>, applying biaxial tensile strain affects the d orbitals of the V atoms that constitute the Dirac cone, and then a topological phase transition appears. Moreover, changing the stacking patterns induces the hybridization competition of the d orbitals, which leads to a magnetic phase transition. Constructing a Kagome bilayer and changing their stacking patterns paves a pathway in exploring quantum effects of topology and magnetism in layered materials.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc03058c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The physical properties induced by layer stacking in two dimensional materials are fascinating. Here, a hexagonal Kagome lattice V2Se3 is constructed to investigate the dependence of the quantum anomalous Hall effect (QAHE) and the phase transition on the different stacking. Based on first principles calculations, the tight-binding model, and the irreducible representations, it is found that QAHE with a Chern number of 1 can be realized in the V2Se3 monolayer. While the V2Se3 bilayer is constructed, the interlayer interaction affects the Dirac cone, so QAHE with Chern number changes from −1 to 2 can be obtained by changing the different stacking patterns. On the other hand, applying biaxial tensile strain and changing stacking patterns in the V2Se3 bilayer will affect the d orbitals of the V atoms. In bilayer V2Se3, applying biaxial tensile strain affects the d orbitals of the V atoms that constitute the Dirac cone, and then a topological phase transition appears. Moreover, changing the stacking patterns induces the hybridization competition of the d orbitals, which leads to a magnetic phase transition. Constructing a Kagome bilayer and changing their stacking patterns paves a pathway in exploring quantum effects of topology and magnetism in layered materials.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.