Xuehao Guo, Xiulian Fan, Xilong Zhou, Wenlong Chu, Chenyang Niu, Liqi He, Shizhen Bin and Yu Zhou
{"title":"A gas-phase alkali-halide-assisted stable precursor supplied from zirconium carbide for the synthesis of 2D large-sized ZrS2 nanosheets†","authors":"Xuehao Guo, Xiulian Fan, Xilong Zhou, Wenlong Chu, Chenyang Niu, Liqi He, Shizhen Bin and Yu Zhou","doi":"10.1039/D4TC02834A","DOIUrl":null,"url":null,"abstract":"<p >Group-IVB transition metal dichalcogenides such as HfS<small><sub>2</sub></small> and ZrS<small><sub>2</sub></small> demonstrate the most promising semiconducting properties, with moderate band gaps and high predicted carrier mobilities. However, the lateral growth of large-domain-size single crystalline ZrS<small><sub>2</sub></small> nanosheets remains to be developed, which limits various electronic and optoelectronic applications. Here, we report a new precursor strategy for the synthesis of large-sized 2D ZrS<small><sub>2</sub></small> nanosheets with lateral orientations. Volatilization of high-melting-point zirconium carbide as a stable precursor was controlled through the assistance of a remote gas-phase alkali halide, which avoids high nucleation density and vertical orientation at the initial stage. The 2D ZrS<small><sub>2</sub></small> nanosheets were regulated by adjusting the growth parameters to give a lateral size of up to 22 μm and a thickness of 8 nm, and exhibited good crystalline qualities and a uniform surface. Field effect transistors of 2D ZrS<small><sub>2</sub></small> nanosheets exhibited n-type transport characteristics with a high on/off ratio and reasonable carrier mobilities. Our new precursor and chemical design pave the way for the synthesis of high-performance group-IVB transition metal dichalcogenide wafers.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02834a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Group-IVB transition metal dichalcogenides such as HfS2 and ZrS2 demonstrate the most promising semiconducting properties, with moderate band gaps and high predicted carrier mobilities. However, the lateral growth of large-domain-size single crystalline ZrS2 nanosheets remains to be developed, which limits various electronic and optoelectronic applications. Here, we report a new precursor strategy for the synthesis of large-sized 2D ZrS2 nanosheets with lateral orientations. Volatilization of high-melting-point zirconium carbide as a stable precursor was controlled through the assistance of a remote gas-phase alkali halide, which avoids high nucleation density and vertical orientation at the initial stage. The 2D ZrS2 nanosheets were regulated by adjusting the growth parameters to give a lateral size of up to 22 μm and a thickness of 8 nm, and exhibited good crystalline qualities and a uniform surface. Field effect transistors of 2D ZrS2 nanosheets exhibited n-type transport characteristics with a high on/off ratio and reasonable carrier mobilities. Our new precursor and chemical design pave the way for the synthesis of high-performance group-IVB transition metal dichalcogenide wafers.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.