Nanocrystalline cellulose-based mixed ionic–electronic conductor for bioelectronics†

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-09-27 DOI:10.1039/D4TC03264K
Katharina Matura, Rosarita D’Orsi, Laura Spagnuolo, Felix Mayr, Munise Cobet, Christoph Putz, Alessandra Operamolla and Serpil Tekoglu
{"title":"Nanocrystalline cellulose-based mixed ionic–electronic conductor for bioelectronics†","authors":"Katharina Matura, Rosarita D’Orsi, Laura Spagnuolo, Felix Mayr, Munise Cobet, Christoph Putz, Alessandra Operamolla and Serpil Tekoglu","doi":"10.1039/D4TC03264K","DOIUrl":null,"url":null,"abstract":"<p >Mixed ionic–electronic conductors (MIEC) are pivotal in advancing medical diagnostics, therapeutic devices, and health monitoring solutions due to their unique properties that enable more effective interfaces between electronic devices and biological systems. Cellulose, a natural and abundant polymer, is a promising material in the development of MIECs for bioelectronics. Combining cellulose with conductive polymer components can leverage the biocompatibility, sustainability, and mechanical properties of composite materials. In this study, we highlight the sulfated cellulose nanocrystals (S-CNCs) as a template for the facile green synthesis of conductive polymer PEDOT (poly(3,4-ethylenedioxythiophene)). The PEDOT:S-CNCs nanocomposite possesses good conductivity and high dispersibility in water. The electronic conductivity is recorded up to 5 S cm<small><sup>−1</sup></small>. A comprehensive investigation for material characterization is associated with the changes in their micro- and nanostructure surface morphology. The biocomposite is deposited as a channel material in organic electrochemical transistors (OECTs) to analyze ion-to-electron transduction. The maximum transconductance values are obtained up to 13.6 mS and 44.3 mS for single-channel and interdigitated OECTs, respectively, without applying photolithography techniques. The high transconductance values reveal the great potential of PEDOT:S-CNCs composite for bioelectronics.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/tc/d4tc03264k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc03264k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mixed ionic–electronic conductors (MIEC) are pivotal in advancing medical diagnostics, therapeutic devices, and health monitoring solutions due to their unique properties that enable more effective interfaces between electronic devices and biological systems. Cellulose, a natural and abundant polymer, is a promising material in the development of MIECs for bioelectronics. Combining cellulose with conductive polymer components can leverage the biocompatibility, sustainability, and mechanical properties of composite materials. In this study, we highlight the sulfated cellulose nanocrystals (S-CNCs) as a template for the facile green synthesis of conductive polymer PEDOT (poly(3,4-ethylenedioxythiophene)). The PEDOT:S-CNCs nanocomposite possesses good conductivity and high dispersibility in water. The electronic conductivity is recorded up to 5 S cm−1. A comprehensive investigation for material characterization is associated with the changes in their micro- and nanostructure surface morphology. The biocomposite is deposited as a channel material in organic electrochemical transistors (OECTs) to analyze ion-to-electron transduction. The maximum transconductance values are obtained up to 13.6 mS and 44.3 mS for single-channel and interdigitated OECTs, respectively, without applying photolithography techniques. The high transconductance values reveal the great potential of PEDOT:S-CNCs composite for bioelectronics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于生物电子学的基于纳米晶纤维素的离子电子混合导体†。
混合离子电子导体(MIEC)具有独特的性能,可在电子设备和生物系统之间建立更有效的界面,因此在推动医疗诊断、治疗设备和健康监测解决方案方面具有举足轻重的作用。纤维素是一种天然而丰富的聚合物,是开发生物电子学 MIEC 的一种前景广阔的材料。将纤维素与导电聚合物成分相结合,可以充分利用复合材料的生物相容性、可持续性和机械性能。在本研究中,我们重点介绍了以硫酸化纤维素纳米晶体(S-CNCs)为模板,轻松绿色合成导电聚合物 PEDOT(聚 3,4-亚乙二氧基噻吩)的方法。PEDOT:S-CNCs 纳米复合材料具有良好的导电性和在水中的高分散性。电子电导率最高可达 5 S cm-1。材料表征的全面研究与其微观和纳米结构表面形态的变化有关。生物复合材料被沉积为有机电化学晶体管(OECT)的通道材料,用于分析离子到电子的传导。在不使用光刻技术的情况下,单通道和交错式有机电化学晶体管的最大跨导值分别达到 13.6 mS 和 44.3 mS。高跨电导值揭示了 PEDOT:S-CNCs 复合材料在生物电子学方面的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Decreased levels of phosphorylated synuclein in plasma are correlated with poststroke cognitive impairment. Small molecule inhibitor DDQ-treated hippocampal neuronal cells show improved neurite outgrowth and synaptic branching. Polyethylene glycol fusion repair of severed sciatic nerves accelerates recovery of nociceptive sensory perceptions in male and female rats of different strains. Reduced mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor contributes to neurodegeneration in a model of spinal and bulbar muscular atrophy pathology. Enhanced autophagic clearance of amyloid-β via histone deacetylase 6-mediated V-ATPase assembly and lysosomal acidification protects against Alzheimer's disease in vitro and in vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1