Kinetic Spectrophotometric Determination of Memantine Hydrochloride Based on the Formation of Its Dinitrochlorobenzene Adduct

IF 1 4区 化学 Q4 CHEMISTRY, ANALYTICAL Journal of Analytical Chemistry Pub Date : 2024-10-22 DOI:10.1134/S1061934824700813
H. L. Varu, N. P. Kapuriya, J. J. Bhalodia, A. H. Bapodra, M. A. Ambasana
{"title":"Kinetic Spectrophotometric Determination of Memantine Hydrochloride Based on the Formation of Its Dinitrochlorobenzene Adduct","authors":"H. L. Varu,&nbsp;N. P. Kapuriya,&nbsp;J. J. Bhalodia,&nbsp;A. H. Bapodra,&nbsp;M. A. Ambasana","doi":"10.1134/S1061934824700813","DOIUrl":null,"url":null,"abstract":"<p>A facile kinetic spectroscopic technique was devised and validated for the precise estimation of memantine hydrochloride. This method depends upon the measurement of various kinetic characteristics of the reaction between the drug and 1-chloro-2,4-dinitrobenzene in an alkaline medium at 70°C. The resultant memantine-dinitrobenzene complex exhibits a distinctive absorbance maximum at 290.5 nm. Spectroscopic analysis was conducted by scanning the complex within the 200 to 800 nm range using a Shimadzu UV-1900 spectrophotometer. Experimental conditions, including reagent concentration, base quantity, order of addition, and reaction temperature, were optimized. The reaction mechanism and stoichiometric ratio of the drug with the reagent were elucidated. Employing various kinetic methodologies such as initial rate, fixed time, and fixed absorbance under optimal conditions enabled the construction of calibration curves and accurate estimation of memantine hydrochloride. The method demonstrated linearity within the concentration range of 3.0 to 7.0 μg/mL. Precision assessment yielded satisfactory relative standard deviations of 2.05 for intra-day and 1.96 for inter-day precision studies. Accuracy studies revealed mean recoveries ranging between 98.55–102.34%. Moreover, the proposed method effectively determined memantine hydrochloride in a commercial formulation.</p>","PeriodicalId":606,"journal":{"name":"Journal of Analytical Chemistry","volume":"79 10","pages":"1431 - 1438"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061934824700813","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A facile kinetic spectroscopic technique was devised and validated for the precise estimation of memantine hydrochloride. This method depends upon the measurement of various kinetic characteristics of the reaction between the drug and 1-chloro-2,4-dinitrobenzene in an alkaline medium at 70°C. The resultant memantine-dinitrobenzene complex exhibits a distinctive absorbance maximum at 290.5 nm. Spectroscopic analysis was conducted by scanning the complex within the 200 to 800 nm range using a Shimadzu UV-1900 spectrophotometer. Experimental conditions, including reagent concentration, base quantity, order of addition, and reaction temperature, were optimized. The reaction mechanism and stoichiometric ratio of the drug with the reagent were elucidated. Employing various kinetic methodologies such as initial rate, fixed time, and fixed absorbance under optimal conditions enabled the construction of calibration curves and accurate estimation of memantine hydrochloride. The method demonstrated linearity within the concentration range of 3.0 to 7.0 μg/mL. Precision assessment yielded satisfactory relative standard deviations of 2.05 for intra-day and 1.96 for inter-day precision studies. Accuracy studies revealed mean recoveries ranging between 98.55–102.34%. Moreover, the proposed method effectively determined memantine hydrochloride in a commercial formulation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于二硝基氯苯加合物形成的盐酸美金刚碱动力学分光光度测定法
设计并验证了一种简便的动力学光谱技术,用于精确估算盐酸美金刚。该方法依赖于测量药物与 1-氯-2,4-二硝基苯在 70°C 碱性介质中反应的各种动力学特征。生成的美金刚烷-二硝基苯复合物在 290.5 纳米波长处显示出独特的吸光度最大值。使用 Shimadzu UV-1900 分光光度计在 200 至 800 纳米范围内扫描复合物,进行光谱分析。对实验条件进行了优化,包括试剂浓度、碱量、添加顺序和反应温度。阐明了药物与试剂的反应机理和化学计量比。在最佳条件下采用各种动力学方法,如初始速率、固定时间和固定吸光度等,构建了校准曲线,准确地估算了盐酸美金刚。该方法在 3.0 至 7.0 μg/mL 浓度范围内呈线性关系。精密度评估结果令人满意,日内精密度的相对标准偏差为 2.05,日间精密度的相对标准偏差为 1.96。准确度研究显示平均回收率为 98.55%-102.34%。此外,所提出的方法还能有效测定商业制剂中的盐酸美金刚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Analytical Chemistry
Journal of Analytical Chemistry 化学-分析化学
CiteScore
2.10
自引率
9.10%
发文量
146
审稿时长
13 months
期刊介绍: The Journal of Analytical Chemistry is an international peer reviewed journal that covers theoretical and applied aspects of analytical chemistry; it informs the reader about new achievements in analytical methods, instruments and reagents. Ample space is devoted to problems arising in the analysis of vital media such as water and air. Consideration is given to the detection and determination of metal ions, anions, and various organic substances. The journal welcomes manuscripts from all countries in the English or Russian language.
期刊最新文献
Application of Stir-Bar Sorptive Extraction for Determination of Organic Pollutants in Snow by Thermal Desorption Gas Chromatography—High-Resolution Mass Spectrometry Use of Scanning Electron Microscopy to Enhance the Accuracy of Mass Spectrometry Analysis of Uranium Microparticles Rapid Characterization of Kraft Lignin Depolymerization Products by High-Resolution Mass Spectrometry with Visualization of Mass Spectrometric Data Method for the Quantitative Detection of Isoforms of Translation Initiation Factors 4E in Potato Leaf Tissues Using Multiple Reaction Monitoring Expected and Unexpected Results in the Separation of Distributions of Deuterosubstituted Multicharged Ions of Apamin and Its Complex
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1