Testing the accuracy of low-beam-energy electron-excited X-ray microanalysis with energy-dispersive spectrometry

IF 3.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science Pub Date : 2024-10-14 DOI:10.1007/s10853-024-10285-4
Dale E. Newbury, Nicholas W. M. Ritchie
{"title":"Testing the accuracy of low-beam-energy electron-excited X-ray microanalysis with energy-dispersive spectrometry","authors":"Dale E. Newbury,&nbsp;Nicholas W. M. Ritchie","doi":"10.1007/s10853-024-10285-4","DOIUrl":null,"url":null,"abstract":"<div><p>The accuracy of electron-excited X-ray microanalysis with energy-dispersive spectrometry (EDS) has been tested in the low beam energy range, specifically at an incident beam energy of 5 keV, which is the lowest beam energy for which a useful characteristic X-ray peak can be excited for all elements of the periodic table, excepting H and He. Elemental analysis results are reported for certified reference materials (CRM), stoichiometric compounds, minerals, and metal alloys of independently known or measured composition which had microscopic homogeneity suitable for microanalysis. Two-hundred sixty-three concentration measurements for 39 elements in 113 materials were determined following the <i>k-ratio protocol</i> and using the EDS analytical software NIST DTSA-II. The accuracy of the results, as characterized by the <i>relative deviation from expected value</i> (RDEV) metric, was such that more than 98% of the results were found to be captured within a range of ±5% RDEV, while 82% of the results fell in the range -2% to 2% RDEV.</p></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"59 40","pages":"19088 - 19111"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10853-024-10285-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10285-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The accuracy of electron-excited X-ray microanalysis with energy-dispersive spectrometry (EDS) has been tested in the low beam energy range, specifically at an incident beam energy of 5 keV, which is the lowest beam energy for which a useful characteristic X-ray peak can be excited for all elements of the periodic table, excepting H and He. Elemental analysis results are reported for certified reference materials (CRM), stoichiometric compounds, minerals, and metal alloys of independently known or measured composition which had microscopic homogeneity suitable for microanalysis. Two-hundred sixty-three concentration measurements for 39 elements in 113 materials were determined following the k-ratio protocol and using the EDS analytical software NIST DTSA-II. The accuracy of the results, as characterized by the relative deviation from expected value (RDEV) metric, was such that more than 98% of the results were found to be captured within a range of ±5% RDEV, while 82% of the results fell in the range -2% to 2% RDEV.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用能量色散光谱法测试低束流电子激发 X 射线微分析的准确性
利用能量色散光谱法(EDS)对电子激发 X 射线显微分析的准确性进行了低束流能量范围内的测试,特别是在入射束流能量为 5 keV 时,这是元素周期表中所有元素(H 和 He 除外)都能激发出有用特征 X 射线峰的最低束流能量。报告中的元素分析结果是针对独立已知或测量的、具有适合微观分析的微观均匀性的有证标准物质 (CRM)、化学合成化合物、矿物和金属合金。按照 k 比率协议,使用 EDS 分析软件 NIST DTSA-II 对 113 种材料中的 39 种元素进行了 263 次浓度测量。根据与预期值的相对偏差 (RDEV) 指标,98% 以上的结果在 ±5% RDEV 范围内,82% 的结果在 -2% 至 2% RDEV 范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Science
Journal of Materials Science 工程技术-材料科学:综合
CiteScore
7.90
自引率
4.40%
发文量
1297
审稿时长
2.4 months
期刊介绍: The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.
期刊最新文献
Methotrexate and triformyl cholic acid functionalized magnetic graphene oxide nanocomposite for multi-targeting chemo-photothermal therapy of hepatocellular carcinoma Fabrication and characterization of zinc-coated aluminum particle joining materials via zincate treatment Research and development of lithium and sodium ion battery technology based on metal organic frameworks (MOFs) Unveiling the hidden potential of Pueraria lobata: A comprehensive analysis based on fiber morphology and physicochemical properties Machining matters: unraveling the electrochemical behavior of Ti6AL4V dental implants in simulated biological environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1