Borui Zhu, Fangli Huang, Jie Guo, Ke Song, Jian He, Shima Liu, Xianwu Zhou
{"title":"Unveiling the hidden potential of Pueraria lobata: A comprehensive analysis based on fiber morphology and physicochemical properties","authors":"Borui Zhu, Fangli Huang, Jie Guo, Ke Song, Jian He, Shima Liu, Xianwu Zhou","doi":"10.1007/s10853-024-10367-3","DOIUrl":null,"url":null,"abstract":"<div><p>Kudzu, <i>Pueraria lobata</i> (Willd.) Ohwi, is a potential natural polymer in textiles, papermaking and composite fields. Systematically exploring fiber morphology and physicochemical properties of different parts of kudzu is essential for analyzing its application value. In this study, kudzu is categorized into aboveground parts (vine xylem and vine phloem) and underground parts (root). The fiber morphology, chemical composition and crystallinity of these parts are determined by optical microscopy, Van Soest method and X-ray diffractometer. Subsequently, the performances of different parts of kudzu in textiles, papermaking and composite fields are assessed through the establishment of an Entropy weight-Rank sum ratio comprehensive evaluation method based on the aforementioned indicators. Notably, this study introduces an innovative mechanical peeling-chemical separation method for isolating fiber cells from plant materials. This method enhances the efficacy of subsequent chemical separation by preliminarily removing adhesive components from the fiber surface, addressing the limitations of single-chemical separation methods that struggle to isolate fiber cells directly. The results demonstrate that the vine xylem of kudzu possesses the longest single fiber length (2326.644 ± 217.531 μm) and the highest aspect ratio (145.694 ± 18.841). Conversely, the root residue exhibits the highest cellulose content (60.97%) and crystallinity (67.74%). Overall, the kudzu root residue is determined to be more suitable for applications in textiles, papermaking, and composite materials compared to its vine xylem and phloem. This study provides valuable theoretical data for the selection of appropriate kudzu materials in various industrial applications.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":645,"journal":{"name":"Journal of Materials Science","volume":"59 44","pages":"20824 - 20839"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10853-024-10367-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Kudzu, Pueraria lobata (Willd.) Ohwi, is a potential natural polymer in textiles, papermaking and composite fields. Systematically exploring fiber morphology and physicochemical properties of different parts of kudzu is essential for analyzing its application value. In this study, kudzu is categorized into aboveground parts (vine xylem and vine phloem) and underground parts (root). The fiber morphology, chemical composition and crystallinity of these parts are determined by optical microscopy, Van Soest method and X-ray diffractometer. Subsequently, the performances of different parts of kudzu in textiles, papermaking and composite fields are assessed through the establishment of an Entropy weight-Rank sum ratio comprehensive evaluation method based on the aforementioned indicators. Notably, this study introduces an innovative mechanical peeling-chemical separation method for isolating fiber cells from plant materials. This method enhances the efficacy of subsequent chemical separation by preliminarily removing adhesive components from the fiber surface, addressing the limitations of single-chemical separation methods that struggle to isolate fiber cells directly. The results demonstrate that the vine xylem of kudzu possesses the longest single fiber length (2326.644 ± 217.531 μm) and the highest aspect ratio (145.694 ± 18.841). Conversely, the root residue exhibits the highest cellulose content (60.97%) and crystallinity (67.74%). Overall, the kudzu root residue is determined to be more suitable for applications in textiles, papermaking, and composite materials compared to its vine xylem and phloem. This study provides valuable theoretical data for the selection of appropriate kudzu materials in various industrial applications.
期刊介绍:
The Journal of Materials Science publishes reviews, full-length papers, and short Communications recording original research results on, or techniques for studying the relationship between structure, properties, and uses of materials. The subjects are seen from international and interdisciplinary perspectives covering areas including metals, ceramics, glasses, polymers, electrical materials, composite materials, fibers, nanostructured materials, nanocomposites, and biological and biomedical materials. The Journal of Materials Science is now firmly established as the leading source of primary communication for scientists investigating the structure and properties of all engineering materials.