Using a Humate-Based Magnetic Sorbent and GC–MS for the Determination of Phenolic Xenoestrogens in Bottom Sediments

IF 1 4区 化学 Q4 CHEMISTRY, ANALYTICAL Journal of Analytical Chemistry Pub Date : 2024-10-22 DOI:10.1134/S1061934824700862
A. S. Gubin, P. T. Sukhanov, A. A. Kushnir, Kh. S. Shikhaliev, M. A. Potapov
{"title":"Using a Humate-Based Magnetic Sorbent and GC–MS for the Determination of Phenolic Xenoestrogens in Bottom Sediments","authors":"A. S. Gubin,&nbsp;P. T. Sukhanov,&nbsp;A. A. Kushnir,&nbsp;Kh. S. Shikhaliev,&nbsp;M. A. Potapov","doi":"10.1134/S1061934824700862","DOIUrl":null,"url":null,"abstract":"<p>A sorbent with magnetic properties, functionalized with humates, in combination with gas chromatography–mass spectrometry is proposed for the determination of phenolic xenoestrogens (<b>ED</b>) in bottom sediments. The octylphenol (<b>OP</b>), nonylphenol (<b>NP</b>), and bisphenol A (<b>BPA</b>) ED are chosen as test samples. Along with ED, the distribution of the naturally occurring estrogen, 17β-estradiol (<b>ES</b>), is studied. Sorption preconcentration is carried out under dynamic conditions: a sorbent weighing 0.5 g is placed in a borosilicate glass column, on both sides of which magnets are placed to immobilize the sorbent. The analytical characteristics of the determination method are established using model samples of bottom sediments selected in a background area with a minimal anthropogenic impact. The limit of quantification for ED is 30–60 ng/kg (dry weight). In analyzing real samples, the sensitivity of the method is reduced by 3–4 times due to matrix effects of the presence of petroleum products in waters. The ED content of bottom sediments at the site of wastewater discharge into the river Don near the city of Voronezh, as well as on the Black Sea coast of the Caucasus (area of the city of Tuapse and the village of Olginka) was monitored. The maximum concentrations of OP, NP, BPA, and ES in bottom sediments were found in the area of the port of Tuapse, where they were 5.7, 8.1, 6.2 and 0.9 µg/kg, respectively.</p>","PeriodicalId":606,"journal":{"name":"Journal of Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061934824700862","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A sorbent with magnetic properties, functionalized with humates, in combination with gas chromatography–mass spectrometry is proposed for the determination of phenolic xenoestrogens (ED) in bottom sediments. The octylphenol (OP), nonylphenol (NP), and bisphenol A (BPA) ED are chosen as test samples. Along with ED, the distribution of the naturally occurring estrogen, 17β-estradiol (ES), is studied. Sorption preconcentration is carried out under dynamic conditions: a sorbent weighing 0.5 g is placed in a borosilicate glass column, on both sides of which magnets are placed to immobilize the sorbent. The analytical characteristics of the determination method are established using model samples of bottom sediments selected in a background area with a minimal anthropogenic impact. The limit of quantification for ED is 30–60 ng/kg (dry weight). In analyzing real samples, the sensitivity of the method is reduced by 3–4 times due to matrix effects of the presence of petroleum products in waters. The ED content of bottom sediments at the site of wastewater discharge into the river Don near the city of Voronezh, as well as on the Black Sea coast of the Caucasus (area of the city of Tuapse and the village of Olginka) was monitored. The maximum concentrations of OP, NP, BPA, and ES in bottom sediments were found in the area of the port of Tuapse, where they were 5.7, 8.1, 6.2 and 0.9 µg/kg, respectively.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用腐殖酸基磁性吸附剂和气相色谱-质谱法测定底层沉积物中的酚类异雌激素
本研究提出了一种具有磁性的吸附剂,该吸附剂具有腐殖酸盐功能,并结合气相色谱-质谱法测定底层沉积物中的酚类异雌激素(ED)。测试样品包括辛基酚(OP)、壬基酚(NP)和双酚 A(BPA)。除了 ED 之外,还研究了天然雌激素 17β-estradiol (ES) 的分布情况。吸附预富集是在动态条件下进行的:将重 0.5 克的吸附剂放入硼硅酸盐玻璃柱中,在柱子两侧放置磁铁以固定吸附剂。这种测定方法的分析特性是通过在人为影响极小的背景地区选取底层沉积物模型样本确定的。ED 的定量限为 30-60 纳克/千克(干重)。在分析实际样品时,由于水体中存在石油产品的基质效应,该方法的灵敏度降低了 3-4 倍。在沃罗涅日市附近向顿河排放废水的地点以及高加索黑海沿岸(图阿普谢市和奥尔金卡村地区),对底层沉积物中的 ED 含量进行了监测。在图阿普谢港地区发现,底层沉积物中 OP、NP、BPA 和 ES 的浓度最高,分别为 5.7、8.1、6.2 和 0.9 微克/千克。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Analytical Chemistry
Journal of Analytical Chemistry 化学-分析化学
CiteScore
2.10
自引率
9.10%
发文量
146
审稿时长
13 months
期刊介绍: The Journal of Analytical Chemistry is an international peer reviewed journal that covers theoretical and applied aspects of analytical chemistry; it informs the reader about new achievements in analytical methods, instruments and reagents. Ample space is devoted to problems arising in the analysis of vital media such as water and air. Consideration is given to the detection and determination of metal ions, anions, and various organic substances. The journal welcomes manuscripts from all countries in the English or Russian language.
期刊最新文献
Separation of Chlorogenic Acids and Caffeine on a Diasfer-110-C10CN Stationary Phase Development, Validation, and Quantification of Organic Impurities with Mass Balance in the Levodopa and Benserazide Hydrochloride Pharmaceutical Dosage Form Surface-Assisted Laser Desorption/Ionization of Metal Complexes with Dithizone Determination of Potassium, Neodymium, and Strontium in Solid Solutions in the KNd(SO4)2·H2O–SrSO4·0.5H2O System Using X-Ray Fluorescence Spectrometry Thin-Layer Chromatography of Methylated Derivatives of Linear Alkylbenzene Sulfonates in Water Analysis by Gas Chromatography–Mass Spectrometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1