Edible Films Based on Corn Starch and Gelatin Obtained by the Combination of Extrusion and Casting Process: Characterization and Applications

IF 2.8 4区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY Food Biophysics Pub Date : 2024-10-28 DOI:10.1007/s11483-024-09891-1
Ernesto Aguilar-Palazuelos, Perla Rosa Fitch-Vargas, Carlos Iván Delgado-Nieblas, Agustín López-Diaz, Aliette Gastélum-Ávila, Marco Antonio Sánchez-Chilero, Víctor Limón-Valenzuela, Irma Leticia Camacho-Hernández, Xóchitl Ariadna Ruiz-Armenta, Abraham Calderón-Castro
{"title":"Edible Films Based on Corn Starch and Gelatin Obtained by the Combination of Extrusion and Casting Process: Characterization and Applications","authors":"Ernesto Aguilar-Palazuelos,&nbsp;Perla Rosa Fitch-Vargas,&nbsp;Carlos Iván Delgado-Nieblas,&nbsp;Agustín López-Diaz,&nbsp;Aliette Gastélum-Ávila,&nbsp;Marco Antonio Sánchez-Chilero,&nbsp;Víctor Limón-Valenzuela,&nbsp;Irma Leticia Camacho-Hernández,&nbsp;Xóchitl Ariadna Ruiz-Armenta,&nbsp;Abraham Calderón-Castro","doi":"10.1007/s11483-024-09891-1","DOIUrl":null,"url":null,"abstract":"<div><p>The development of edible films (EFs) using renewable resources such as gelatin and native corn starch has garnered significant interest due to their potential to enhance food preservation and safety. Combining extrusion with the casting method enhances mechanical and barrier properties by modifying starch and gelatin structures through heat, pressure, and shear. This study aimed to develop, characterize, and optimize the functional properties EFs produced from an extruded formulation of corn starch, gelatin, and glycerol using the casting method. Furthermore, it evaluated the impact of these optimized EFs as coatings on the quality characteristics of the “Kent” mango cultivar. The study factors were gelatin content (GC, 0–10%) and extrusion temperature (ET, 80–120°C). The EFs were characterized and optimized, determining the tensile strength (<i>σ</i>), elongation (<i>ε</i>), water vapor permeability (WVP), and Water Solubility (S), using the surface response methodology. Results showed GC significantly influenced mechanical and barrier properties (<i>P &lt;</i> 0.05), with higher GC increasing σ, ε, WVP, and S. ET also affected mechanical properties (<i>P &lt;</i> 0.05) but not barrier properties (<i>P &gt;</i> 0.05). EFs exhibited <i>σ</i> of 3.14 MPa to 8.34 MPa, <i>ε</i> of 10.55–25.60%, WVP (5.59 × 10<sup>–12</sup> to 6.82 × 10<sup>–11</sup> g m Pa<sup>-1</sup> s<sup>-1</sup> m<sup>-2</sup>), and S from 66.29–80.50%. According to the optimization study, the EFs with the best mechanical and barrier properties were obtained using an ET of 80°C and GC of 2.93%. Applied as coatings on ‘Kent’ mango, these EFs significantly extended shelf life and preserved postharvest quality.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"20 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-024-09891-1","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of edible films (EFs) using renewable resources such as gelatin and native corn starch has garnered significant interest due to their potential to enhance food preservation and safety. Combining extrusion with the casting method enhances mechanical and barrier properties by modifying starch and gelatin structures through heat, pressure, and shear. This study aimed to develop, characterize, and optimize the functional properties EFs produced from an extruded formulation of corn starch, gelatin, and glycerol using the casting method. Furthermore, it evaluated the impact of these optimized EFs as coatings on the quality characteristics of the “Kent” mango cultivar. The study factors were gelatin content (GC, 0–10%) and extrusion temperature (ET, 80–120°C). The EFs were characterized and optimized, determining the tensile strength (σ), elongation (ε), water vapor permeability (WVP), and Water Solubility (S), using the surface response methodology. Results showed GC significantly influenced mechanical and barrier properties (P < 0.05), with higher GC increasing σ, ε, WVP, and S. ET also affected mechanical properties (P < 0.05) but not barrier properties (P > 0.05). EFs exhibited σ of 3.14 MPa to 8.34 MPa, ε of 10.55–25.60%, WVP (5.59 × 10–12 to 6.82 × 10–11 g m Pa-1 s-1 m-2), and S from 66.29–80.50%. According to the optimization study, the EFs with the best mechanical and barrier properties were obtained using an ET of 80°C and GC of 2.93%. Applied as coatings on ‘Kent’ mango, these EFs significantly extended shelf life and preserved postharvest quality.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于玉米淀粉和明胶的可食用薄膜:挤压和浇铸工艺的结合:特性与应用
利用明胶和原生玉米淀粉等可再生资源开发的可食用薄膜(EFs)因其在提高食品保存和安全性方面的潜力而备受关注。将挤压与浇铸方法相结合,通过热、压和剪切力改变淀粉和明胶的结构,可增强其机械和阻隔性能。本研究旨在利用浇铸法开发、表征和优化由玉米淀粉、明胶和甘油的挤压配方制成的功能特性 EFs。此外,研究还评估了这些优化后的 EF 作为涂层对 "肯特 "芒果品种质量特性的影响。研究因素包括明胶含量(GC,0-10%)和挤压温度(ET,80-120°C)。采用表面响应法对 EF 进行了表征和优化,确定了拉伸强度(σ)、伸长率(ε)、水蒸气渗透性(WVP)和水溶性(S)。结果表明,GC 对机械性能和阻隔性能有明显影响(P < 0.05),GC 越高,σ、ε、WVP 和 S 越大;ET 也影响机械性能(P < 0.05),但不影响阻隔性能(P > 0.05)。EF 的 σ 为 3.14 MPa 至 8.34 MPa,ε 为 10.55-25.60%,WVP 为 5.59 × 10-12 至 6.82 × 10-11 g m Pa-1 s-1 m-2,S 为 66.29-80.50%。根据优化研究,使用 80°C 的蒸发温度和 2.93% 的 GC,可获得机械和阻隔性能最佳的 EF。作为 "肯特 "芒果的涂层,这些 EF 能显著延长保质期并保持采后品质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Biophysics
Food Biophysics 工程技术-食品科技
CiteScore
5.80
自引率
3.30%
发文量
58
审稿时长
1 months
期刊介绍: Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell. A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.
期刊最新文献
Post-Harvest Quality of Red Bell Pepper: Effect of Ozonized Mist and Protective Film Enhancing Shelf Life and Bioavailability of Vitamin D Through Encapsulation: A Comprehensive Review Effects of Ultrasound-Assisted Extraction on Physicochemical and Functional Properties of Gelatin Derived from Hilsha (Tenualosa ilisha) Scales Apple Pectin Based Film with Apis Mellifera Honey and /or Propolis Extract as Sources of Active Compounds Mathematical and ANN Modelling for Convective Drying of Spanish Cherry Seeds: Bioactive Degradation, Energy Efficiency, and Mass Transfer Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1