This study aims to optimize and assess the efficacy of chitosan (Ch)/starch/aloe vera oil (AV) films as active packaging for beef fillet preservation using Response Surface Methodology (RSM). The optimum formulation was reached at 1.4% w/v Ch, 1.8% w/v starch, and 0.5% v/v AV, employing nine responses: moisture (17.17%), water vapor permeability (0.92 g/m²·h), tensile strength (1596.33 N/m2), elongation (12.84%), antioxidant activity (56.68%), and antibacterial activity against Escherichia coli (9.55 mm inhibition zone), Salmonella typhi (8.39 mm), Staphylococcus aureus (11.09 mm), and Staphylococcus epidermidis (11.46 mm). The optimized Ch/starch/AV films exhibited enhanced functional properties, including improved water barrier, physical and mechanical strength, and heightened antimicrobial and antioxidant activities. To elucidate the antibacterial mechanism, active compounds from AV were molecularly docked into the active site of the FtsA enzyme. The beef fillets were stored at 4 °C for 12 days, and the Ch/starch/AV films significantly improved the shelf-life of beef fillets compared to Ch/starch films during the storage period. Additionally, sensory tests indicated favorable consumer acceptance and environmental assessments demonstrated reduced emission residue, waste disposal impact, toxicity potential, affordability, and social acceptability. Overall, this study provides valuable insights into creating sustainable and efficient packaging materials for high-value meat products, encouraging reduced food waste and environmental impact.