Mao Xu, Ryota Matsumoto, Phuvasa Chanonmuang, Kazuhide Matsuda
{"title":"Vertical profile measurements for ammonia in a Japanese deciduous forest using denuder sampling technique: ammonia emissions near the forest floor","authors":"Mao Xu, Ryota Matsumoto, Phuvasa Chanonmuang, Kazuhide Matsuda","doi":"10.1007/s44273-024-00042-z","DOIUrl":null,"url":null,"abstract":"<div><p>Ammonia (NH<sub>3</sub>) has received considerable attention as a major reduced nitrogen. However, accurate estimates of the deposition amount are difficult due to its complex behavior characterized by bidirectional exchange between the atmosphere and the surface. We observed the vertical profile of NH<sub>3</sub> concentration in a deciduous forest in Japan for 1 year to further advance the studies on NH<sub>3</sub> bidirectional exchange in Asia, especially focusing on the process near the forest floor. The observation period lasted from September 29, 2020, to September 28, 2021, including leafy and leafless periods. Using the denuder sampling technique, we measured NH<sub>3</sub> concentration in the forest at three heights (above the forest canopy, 30 m, and near the forest floor, 2 m and 0.2 m). NH<sub>3</sub> concentrations tended to be highest at the top of the canopy (30 m). Focusing on the concentration near the forest floor, the concentrations at 0.2 m were frequently higher than those at 2 m regardless of the leafy and leafless period, thus suggesting NH<sub>3</sub> emissions from the forest floor. NH<sub>3</sub> concentration near the forest floor showed strong positive correlations with air temperature during the leafy period. The NH<sub>3</sub> emissions from the forest floor during the leafy period were possibly due to the decomposition of leaf litter with increased air temperature. The decrease in leaf area index might induced the increase in NH<sub>3</sub> concentration and emission. NH<sub>3</sub> emission during the leafless period was also possibly dependent on the state of the deposition surface, apart from air temperature, relative humidity, and leaf area index.\n</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":45358,"journal":{"name":"Asian Journal of Atmospheric Environment","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44273-024-00042-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Atmospheric Environment","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44273-024-00042-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ammonia (NH3) has received considerable attention as a major reduced nitrogen. However, accurate estimates of the deposition amount are difficult due to its complex behavior characterized by bidirectional exchange between the atmosphere and the surface. We observed the vertical profile of NH3 concentration in a deciduous forest in Japan for 1 year to further advance the studies on NH3 bidirectional exchange in Asia, especially focusing on the process near the forest floor. The observation period lasted from September 29, 2020, to September 28, 2021, including leafy and leafless periods. Using the denuder sampling technique, we measured NH3 concentration in the forest at three heights (above the forest canopy, 30 m, and near the forest floor, 2 m and 0.2 m). NH3 concentrations tended to be highest at the top of the canopy (30 m). Focusing on the concentration near the forest floor, the concentrations at 0.2 m were frequently higher than those at 2 m regardless of the leafy and leafless period, thus suggesting NH3 emissions from the forest floor. NH3 concentration near the forest floor showed strong positive correlations with air temperature during the leafy period. The NH3 emissions from the forest floor during the leafy period were possibly due to the decomposition of leaf litter with increased air temperature. The decrease in leaf area index might induced the increase in NH3 concentration and emission. NH3 emission during the leafless period was also possibly dependent on the state of the deposition surface, apart from air temperature, relative humidity, and leaf area index.