Non-Thermal Processes of Nitric Oxide Formation during Precipitation of Auroral Electrons into the Upper Atmospheres of Terrestrial Planets

IF 1.1 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Astronomy Reports Pub Date : 2024-10-25 DOI:10.1134/S1063772924700744
V. Shematovich, D. Bisikalo, G. Tsurikov, A. Zhilkin
{"title":"Non-Thermal Processes of Nitric Oxide Formation during Precipitation of Auroral Electrons into the Upper Atmospheres of Terrestrial Planets","authors":"V. Shematovich,&nbsp;D. Bisikalo,&nbsp;G. Tsurikov,&nbsp;A. Zhilkin","doi":"10.1134/S1063772924700744","DOIUrl":null,"url":null,"abstract":"<p>Nitric oxide is a potential biomarker in the N<sub>2</sub>–O<sub>2</sub> atmospheres of terrestrial exoplanets, which can be detected by space missions, including the planned launch of the Russian Spektr-UV observatory. From observations of the Earth’s thermosphere in the polar regions, it is known that important sources of formation of this molecule are the precipitation of high-energy electrons into the planet’s atmosphere, as well as the non-thermal processes accompanying them. In this paper, we study the non-thermal processes of nitric oxide formation in the polar regions of the Earth’s upper atmosphere, as well as the atmospheres of exoplanets located in the potential habitable zone of active stars. For this purpose the following models are developed: a numerical kinetic Monte Carlo model of the interaction of energetic electrons with atmospheric gas, a kinetic Monte Carlo model of the interaction of suprathermal N(<sup>4</sup>S) atoms formed as a result of dissociation of N<sub>2</sub> molecules by electron impact with the surrounding gas; a model of odd nitrogen chemistry with molecular and eddy diffusion. Based on results of calculations, it is confirmed that the process of dissociation of N<sub>2</sub> by an electron impact during the interaction of the stellar wind with the atmosphere of the planet is an important source of suprathermal N atoms, which contribute to a significant increase in the non-thermal formation of NO in the N<sub>2</sub>–O<sub>2</sub> atmospheres of terrestrial planets (both locally, in the case of a planet’s own magnetic field, and throughout the whole planet’s surface, in case of its absence). Since the column concentration of NO during flares becomes larger, therefore, the chances of detecting of nitric oxide biomarker in the atmospheres of the terrestrial-type exoplanets located in the potential habitable zone of active stars are also become larger.</p>","PeriodicalId":55440,"journal":{"name":"Astronomy Reports","volume":"68 8","pages":"843 - 864"},"PeriodicalIF":1.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy Reports","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063772924700744","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Nitric oxide is a potential biomarker in the N2–O2 atmospheres of terrestrial exoplanets, which can be detected by space missions, including the planned launch of the Russian Spektr-UV observatory. From observations of the Earth’s thermosphere in the polar regions, it is known that important sources of formation of this molecule are the precipitation of high-energy electrons into the planet’s atmosphere, as well as the non-thermal processes accompanying them. In this paper, we study the non-thermal processes of nitric oxide formation in the polar regions of the Earth’s upper atmosphere, as well as the atmospheres of exoplanets located in the potential habitable zone of active stars. For this purpose the following models are developed: a numerical kinetic Monte Carlo model of the interaction of energetic electrons with atmospheric gas, a kinetic Monte Carlo model of the interaction of suprathermal N(4S) atoms formed as a result of dissociation of N2 molecules by electron impact with the surrounding gas; a model of odd nitrogen chemistry with molecular and eddy diffusion. Based on results of calculations, it is confirmed that the process of dissociation of N2 by an electron impact during the interaction of the stellar wind with the atmosphere of the planet is an important source of suprathermal N atoms, which contribute to a significant increase in the non-thermal formation of NO in the N2–O2 atmospheres of terrestrial planets (both locally, in the case of a planet’s own magnetic field, and throughout the whole planet’s surface, in case of its absence). Since the column concentration of NO during flares becomes larger, therefore, the chances of detecting of nitric oxide biomarker in the atmospheres of the terrestrial-type exoplanets located in the potential habitable zone of active stars are also become larger.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
极光电子沉降到地球星高层大气期间一氧化氮的非热形成过程
一氧化氮是地外行星大气中 N2-O2 的潜在生物标志物,可通过空间飞行任务(包括计划发射的俄罗斯 Spektr-UV 观测站)探测到。通过对地球极地热大气层的观测,我们知道形成这种分子的重要来源是进入行星大气层的高能电子沉淀,以及伴随这些电子沉淀的非热过程。在本文中,我们研究了地球高层大气极区以及位于活跃恒星潜在宜居带的系外行星大气中一氧化氮形成的非热过程。为此开发了以下模型:高能电子与大气气体相互作用的蒙特卡洛动力学数值模型、N2 分子在电子撞击下解离而形成的超热 N(4S)原子与周围气体相互作用的蒙特卡洛动力学模型;带有分子和涡流扩散的奇数氮化学模型。根据计算结果证实,在恒星风与行星大气相互作用过程中,电子撞击解离 N2 的过程是超热 N 原子的一个重要来源,它有助于显著增加陆地行星 N2-O2 大气中 NO 的非热形成(在行星自身有磁场的情况下是局部增加,而在没有磁场的情况下则是整个行星表面增加)。由于耀斑期间一氧化氮的柱浓度变得更大,因此在位于活跃恒星潜在宜居带的类地行星大气层中检测到一氧化氮生物标记的机会也变得更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Astronomy Reports
Astronomy Reports 地学天文-天文与天体物理
CiteScore
1.40
自引率
20.00%
发文量
57
审稿时长
6-12 weeks
期刊介绍: Astronomy Reports is an international peer reviewed journal that publishes original papers on astronomical topics, including theoretical and observational astrophysics, physics of the Sun, planetary astrophysics, radio astronomy, stellar astronomy, celestial mechanics, and astronomy methods and instrumentation.
期刊最新文献
Effect of the Star Extreme Radiation Flux on the Structure of the Hydrogen–Helium Upper Atmosphere of Hot Jupiter Details of Modelling the Non-Stationary Thermal Structure of an Axially Symmetric Protoplanetary Disk Variations in the Orbital Periods of Eclipsing Binaries δLib and SXLyn Investigation of the Temporal Variations in Scattering and Dispersion Measure of Giant Radio Pulses in the Pulsar В0531+21 in the Crab Nebula at 111 MHz Frequency in 2002–2024 Measurement of Radio Emission Scattering Parameters in the Direction of Pulsars B0809+74, B0919+06, and B1133+16 with Ground-Space Interferometer RadioAstron
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1