Super gastro-resistant microcapsules based on CaCO3 nanocrystal buffered alginate/pectin composites for colon-targeted probiotic delivery: in vitro and in vivo evaluation
Yunsi Guo, Yi Liu, Kexian Chen, Lei Cai, Shan Huang, Yue Zhang
{"title":"Super gastro-resistant microcapsules based on CaCO3 nanocrystal buffered alginate/pectin composites for colon-targeted probiotic delivery: in vitro and in vivo evaluation","authors":"Yunsi Guo, Yi Liu, Kexian Chen, Lei Cai, Shan Huang, Yue Zhang","doi":"10.1007/s42114-024-01017-y","DOIUrl":null,"url":null,"abstract":"<div><p>Encapsulation of probiotics using a polysaccharide-based formulation is becoming a common strategy to enhance the viability of probiotics. However, the hydrophilic nature of polysaccharide-based encapsulants may still cause the loss of probiotic activity during harsh processing and gastric digestion. In this study, <i>Lactobacillus rhamnosus GG</i> was successfully encapsulated into alginate/pectin composite hydrogel beads using the high-efficiency vibration technology (HEVT), which were further reinforced by CaCO<sub>3</sub> nanocrystals as antacid and freeze-dried into microcapsules. The structure, the physicochemical, encapsulation, and digestion properties of the beads were observed. The sample composed of a mass ratio of 9:1 alginate/pectin with CaCO<sub>3</sub> nanocrystals showed a significantly higher viability of 10.32 Log CFU/g. A maximum of 8.49 Log CFU/g of probiotics survived after harsh gastric digestion and were control-released in the colonic fluid. The formulation with CaCO<sub>3</sub> nanocrystals significantly improved the survival number compared to the alginate/pectin formulation. This can be attributed to the buffering properties of CaCO<sub>3</sub> on the gradual dissolution process and the simultaneous dication-induced egg-box crosslinking. Additionally, after being stored for 56 days, the viable numbers of encapsulated probiotics were more than 5.52 Log CFU/g. The results of animal tests indicated that feeding encapsulated probiotics significantly altered the composition of gut microbiota in mice. Overall, the optimized formulation and fabrication route show promise for direct utilization by the food industry. This study also confirmed the significance of antacid nanocrystals in the design of polysaccharide-based oral delivery system for probiotics.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":null,"pages":null},"PeriodicalIF":23.2000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01017-y","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Encapsulation of probiotics using a polysaccharide-based formulation is becoming a common strategy to enhance the viability of probiotics. However, the hydrophilic nature of polysaccharide-based encapsulants may still cause the loss of probiotic activity during harsh processing and gastric digestion. In this study, Lactobacillus rhamnosus GG was successfully encapsulated into alginate/pectin composite hydrogel beads using the high-efficiency vibration technology (HEVT), which were further reinforced by CaCO3 nanocrystals as antacid and freeze-dried into microcapsules. The structure, the physicochemical, encapsulation, and digestion properties of the beads were observed. The sample composed of a mass ratio of 9:1 alginate/pectin with CaCO3 nanocrystals showed a significantly higher viability of 10.32 Log CFU/g. A maximum of 8.49 Log CFU/g of probiotics survived after harsh gastric digestion and were control-released in the colonic fluid. The formulation with CaCO3 nanocrystals significantly improved the survival number compared to the alginate/pectin formulation. This can be attributed to the buffering properties of CaCO3 on the gradual dissolution process and the simultaneous dication-induced egg-box crosslinking. Additionally, after being stored for 56 days, the viable numbers of encapsulated probiotics were more than 5.52 Log CFU/g. The results of animal tests indicated that feeding encapsulated probiotics significantly altered the composition of gut microbiota in mice. Overall, the optimized formulation and fabrication route show promise for direct utilization by the food industry. This study also confirmed the significance of antacid nanocrystals in the design of polysaccharide-based oral delivery system for probiotics.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.