A Method for Forecasting Geomagnetic Storms Based on Deep Learning Neural Networks Using Time Series of Matrix Observations of the Uragan Muon Hodoscope

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Geomagnetism and Aeronomy Pub Date : 2024-10-27 DOI:10.1134/S0016793224600644
V. G. Getmanov, A. D. Gvishiani, A. A. Soloviev, K. S. Zaitsev, M. E. Dunaev, E. V. Yekhlakov
{"title":"A Method for Forecasting Geomagnetic Storms Based on Deep Learning Neural Networks Using Time Series of Matrix Observations of the Uragan Muon Hodoscope","authors":"V. G. Getmanov,&nbsp;A. D. Gvishiani,&nbsp;A. A. Soloviev,&nbsp;K. S. Zaitsev,&nbsp;M. E. Dunaev,&nbsp;E. V. Yekhlakov","doi":"10.1134/S0016793224600644","DOIUrl":null,"url":null,"abstract":"<p>A method for forecasting geomagnetic storms based on deep learning neural networks using digital time series processing for matrix observations of the URAGAN muon hodoscope and scalar <i>Dst</i>-indices has been developed. A scheme of computational operations and extrapolation formulas for matrix observations are proposed. The a variant of the neural network software module and its parameters are chosen. A decision-making rule is formed to forecast and assess the probabilities of correct and false forecasts of geomagnetic storms. An experimental study of estimates of the probabilistic characteristics and forecasting intervals of geomagnetic storms has confirmed the efficiency of the method. The obtained forecasting results are oriented towards solving a number of solar–terrestrial physics and national economic problems.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793224600644","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

A method for forecasting geomagnetic storms based on deep learning neural networks using digital time series processing for matrix observations of the URAGAN muon hodoscope and scalar Dst-indices has been developed. A scheme of computational operations and extrapolation formulas for matrix observations are proposed. The a variant of the neural network software module and its parameters are chosen. A decision-making rule is formed to forecast and assess the probabilities of correct and false forecasts of geomagnetic storms. An experimental study of estimates of the probabilistic characteristics and forecasting intervals of geomagnetic storms has confirmed the efficiency of the method. The obtained forecasting results are oriented towards solving a number of solar–terrestrial physics and national economic problems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习神经网络的地磁暴预报方法,利用乌拉干渺子霍德观测矩阵的时间序列
开发了一种基于深度学习神经网络的地磁暴预报方法,利用数字时间序列处理URAGANμ介子示波器的矩阵观测数据和标量Dst指数。提出了矩阵观测的计算操作方案和外推公式。选择了神经网络软件模块的变体及其参数。形成了预测和评估地磁暴正确和错误预测概率的决策规则。对地磁暴概率特征和预报间隔估计的实验研究证实了该方法的效率。所获得的预报结果将用于解决一些日地物理学和国民经济问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geomagnetism and Aeronomy
Geomagnetism and Aeronomy Earth and Planetary Sciences-Space and Planetary Science
CiteScore
1.30
自引率
33.30%
发文量
65
审稿时长
4-8 weeks
期刊介绍: Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.
期刊最新文献
Calculation of Geomagnetic Cutoff Rigidity Using Tracing Based on the Buneman–Boris Method Evaluation of Dynamic Attributes and Variability of Ionospheric Slant Total Electron Content Using NavIC Satellite System Predicting the Unpredictable: Advancements in Earthquake Forecasting Using Artificial Intelligence and LSTM Networks Ionospheric Whispers of the Earth’s Tremors: Decoding TEC Mysteries in the East Anatolian Fault Zone On the Possible Relationship of a Set of Statistically Revealed Quasi-Linear Local Trends of Variations in the Magnetic Field Parameters Prior to Earthquakes in Seismically Active Zones of the Black Sea, Caucasus, and Western Asia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1