{"title":"Trigger Effects of Space Weather Impact on Earth Tectonics and Their Impact on Climate","authors":"B. P. Komitov, V. I. Kaftan","doi":"10.1134/S0016793224700488","DOIUrl":null,"url":null,"abstract":"<p>The subject of this study is the effect of space weather on the processes of interaction between Earth’s lithosphere, ionosphere, and atmosphere. Evidence is provided that solar flares in the short-wavelength region of the electromagnetic spectrum destabilize of the electric field between the ionosphere and upper lithosphere, leading in some cases to the triggering of powerful volcanic and seismic phenomena during periods of high solar activity. Conversely, an increased background flux of galactic cosmic rays (GCR) during low solar activity leads to a decrease in the critical level of stresses preceding powerful tectonic events and contributes to an increase in their frequency. The studied interactions influence the formation processes and dynamics of aerosols, which in turn influence cloud formation and climate change.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 8","pages":"1348 - 1360"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793224700488","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The subject of this study is the effect of space weather on the processes of interaction between Earth’s lithosphere, ionosphere, and atmosphere. Evidence is provided that solar flares in the short-wavelength region of the electromagnetic spectrum destabilize of the electric field between the ionosphere and upper lithosphere, leading in some cases to the triggering of powerful volcanic and seismic phenomena during periods of high solar activity. Conversely, an increased background flux of galactic cosmic rays (GCR) during low solar activity leads to a decrease in the critical level of stresses preceding powerful tectonic events and contributes to an increase in their frequency. The studied interactions influence the formation processes and dynamics of aerosols, which in turn influence cloud formation and climate change.
期刊介绍:
Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.