{"title":"Shaking table test study of anti-dip rock slope with complex structural plane under earthquake","authors":"Kunsheng Gu, Jian Zhou, Mingzhu Guo","doi":"10.1007/s10064-024-03968-4","DOIUrl":null,"url":null,"abstract":"<div><p>A shaking table model test was carried out to study the failure mechanism of an anti-dip rock slope with complex structural planes. The effect of the input seismic wave frequency, types and structural plane on the slope’s dynamic response were considered. The test results show that the input seismic wave frequency is closer to the slope’s natural frequency, the acceleration amplification factor is greater. The amplification effect of input bedrock seismic waves is higher than that of soil seismic waves for rock slopes. The existence of soft-hard rock interface and tectonic fissures inhibit the slope’s amplification effect on seismic waves, and the inhibitory effect of tectonic fissures is higher than that of soft-hard rock interface. Slope displacement increases with the increase of input wave amplitude, but the change is not obvious with the increase of frequency. The time cumulative effect is more obvious under high amplitude input seismic wave for the slope’s displacement. The slope deformation and instability mode can be called ‘bending-shear slip instability’. The results of this paper are meaningful for the further understanding the dynamic failure mode of anti-dip rock slope with complex structural planes.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"83 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-03968-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
A shaking table model test was carried out to study the failure mechanism of an anti-dip rock slope with complex structural planes. The effect of the input seismic wave frequency, types and structural plane on the slope’s dynamic response were considered. The test results show that the input seismic wave frequency is closer to the slope’s natural frequency, the acceleration amplification factor is greater. The amplification effect of input bedrock seismic waves is higher than that of soil seismic waves for rock slopes. The existence of soft-hard rock interface and tectonic fissures inhibit the slope’s amplification effect on seismic waves, and the inhibitory effect of tectonic fissures is higher than that of soft-hard rock interface. Slope displacement increases with the increase of input wave amplitude, but the change is not obvious with the increase of frequency. The time cumulative effect is more obvious under high amplitude input seismic wave for the slope’s displacement. The slope deformation and instability mode can be called ‘bending-shear slip instability’. The results of this paper are meaningful for the further understanding the dynamic failure mode of anti-dip rock slope with complex structural planes.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.