Yao Geng, Pengju Qin, Yu Lu, Yifei Sun, Jun Zhang, Xiaoqiang Dong
{"title":"Comparative effects of biochars from different feedstocks on the desiccation process of loess","authors":"Yao Geng, Pengju Qin, Yu Lu, Yifei Sun, Jun Zhang, Xiaoqiang Dong","doi":"10.1007/s10064-025-04153-x","DOIUrl":null,"url":null,"abstract":"<div><p>Biochar is widely used for the improvement of soil in farmlands. However, the effect of biochar from different feedstocks on property changes during loess desiccation remains unclear. In this study, four types of biochar, including sludge biochar (SBC), wood biochar (WBC), cow dung biochar (CDBC), and corn straw biochar (CSBC), were mixed with loess from the top layer of the wheat field at concentrations of 0%, 5%, and 10%. Their impacts on loess soil evaporation, cracking, CO<sub>2</sub> emissions and electrical resistivity during desiccation were evaluated and microstructural changes after desiccation were analyzed. The results showed significant improvements in water retention with the addition of biochar, especially with CSBC, which prolonged the drying time. The addition of biochar suppressed cracks formed during loess desiccation, with CSBC having the most significant effect, reducing the crack intensity factor (CIF) by 70.47% and 89.01% for CSBC5 and CSBC10, respectively. The mean CO<sub>2</sub> concentration during desiccation decreased for only three specimens (CSBC5, SBC5 and CDBC10). The CO<sub>2</sub>–C fluxes after the addition of biochar were not lower than those of pure loess. The addition of biochar reduced soil resistivity and altered the pore size distribution (PSD) of loess. Biochar from different feedstocks improves water retention and inhibits cracking to varying degrees during loess desiccation, with 5% CSBC proving to be the most effective in optimizing soil properties. The electrical resistivity effectively characterizes the macroscopic and microscopic variations in loess.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-025-04153-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Biochar is widely used for the improvement of soil in farmlands. However, the effect of biochar from different feedstocks on property changes during loess desiccation remains unclear. In this study, four types of biochar, including sludge biochar (SBC), wood biochar (WBC), cow dung biochar (CDBC), and corn straw biochar (CSBC), were mixed with loess from the top layer of the wheat field at concentrations of 0%, 5%, and 10%. Their impacts on loess soil evaporation, cracking, CO2 emissions and electrical resistivity during desiccation were evaluated and microstructural changes after desiccation were analyzed. The results showed significant improvements in water retention with the addition of biochar, especially with CSBC, which prolonged the drying time. The addition of biochar suppressed cracks formed during loess desiccation, with CSBC having the most significant effect, reducing the crack intensity factor (CIF) by 70.47% and 89.01% for CSBC5 and CSBC10, respectively. The mean CO2 concentration during desiccation decreased for only three specimens (CSBC5, SBC5 and CDBC10). The CO2–C fluxes after the addition of biochar were not lower than those of pure loess. The addition of biochar reduced soil resistivity and altered the pore size distribution (PSD) of loess. Biochar from different feedstocks improves water retention and inhibits cracking to varying degrees during loess desiccation, with 5% CSBC proving to be the most effective in optimizing soil properties. The electrical resistivity effectively characterizes the macroscopic and microscopic variations in loess.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.