Preparation of micro-meso-macroporous structured hydrangea-like cobaltous sulfide with sulphur vacancy for high-performance electromagnetic wave absorption

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Advanced Composites and Hybrid Materials Pub Date : 2024-10-22 DOI:10.1007/s42114-024-01028-9
Hanwen Zhang, Liyuan Liu, Qiuyu Li, Xiubo Xie, Wei Du, Chuanxin Hou
{"title":"Preparation of micro-meso-macroporous structured hydrangea-like cobaltous sulfide with sulphur vacancy for high-performance electromagnetic wave absorption","authors":"Hanwen Zhang,&nbsp;Liyuan Liu,&nbsp;Qiuyu Li,&nbsp;Xiubo Xie,&nbsp;Wei Du,&nbsp;Chuanxin Hou","doi":"10.1007/s42114-024-01028-9","DOIUrl":null,"url":null,"abstract":"<div><p>Cobaltous sulfide shows good potential as substances to absorb electromagnetic waves (EWs) due to its features of relatively high conductivity, excellent electrocatalytic activity and inexpensive price. However, there are still great challenges to achieve a broad absorption frequency and strong EW absorption capability. Herein, hydrangea-like CoS with micro-meso-macroporous multilamellar intersecting structure was synthesized by an elementary one-pot hydro-thermal synthesis. The uniquely designed morphology and content of sulphur vacancy of CoS was optimized by controlling synthesis time, which proved to effectively modulate the electromagnetic parameters. The optimized electromagnetic wave-absorbing materials (EWAMs) present the satisfactory EW-absorbing ability, including the minimum reflection loss (RL<sub>min</sub>) of − 21.27 dB at a frequency of 12.48 GHz, a maximum effective absorption bandwidth (EAB<sub>max</sub>) of 5.6 GHz at a thickness of 1.9 mm. The superior EW absorbing performance of CoS was thanks to the cooperative effect of impedance-match, dipole polarization, Maxwell–Wagner effect and conductive loss. Furthermore, the radar cross section (RCS) simulation results further proved its dissipation capability of CoS EWAMs in actual application scenarios. This facile structural design strategy provides a new direction for preparation of CoS-based and other EWAMs with high EW-absorbing ability, which possesses extensive their further potential practical application.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 6","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01028-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

Cobaltous sulfide shows good potential as substances to absorb electromagnetic waves (EWs) due to its features of relatively high conductivity, excellent electrocatalytic activity and inexpensive price. However, there are still great challenges to achieve a broad absorption frequency and strong EW absorption capability. Herein, hydrangea-like CoS with micro-meso-macroporous multilamellar intersecting structure was synthesized by an elementary one-pot hydro-thermal synthesis. The uniquely designed morphology and content of sulphur vacancy of CoS was optimized by controlling synthesis time, which proved to effectively modulate the electromagnetic parameters. The optimized electromagnetic wave-absorbing materials (EWAMs) present the satisfactory EW-absorbing ability, including the minimum reflection loss (RLmin) of − 21.27 dB at a frequency of 12.48 GHz, a maximum effective absorption bandwidth (EABmax) of 5.6 GHz at a thickness of 1.9 mm. The superior EW absorbing performance of CoS was thanks to the cooperative effect of impedance-match, dipole polarization, Maxwell–Wagner effect and conductive loss. Furthermore, the radar cross section (RCS) simulation results further proved its dissipation capability of CoS EWAMs in actual application scenarios. This facile structural design strategy provides a new direction for preparation of CoS-based and other EWAMs with high EW-absorbing ability, which possesses extensive their further potential practical application.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
制备具有硫空位的微介质大孔结构绣球状硫化钴,用于高性能电磁波吸收
硫化钴具有较高的电导率、优异的电催化活性和低廉的价格,因此很有可能成为吸收电磁波(EW)的物质。然而,要实现较宽的吸收频率和较强的电磁波吸收能力仍面临巨大挑战。本文通过简单的一锅水热合成法合成了具有微-介-大孔多层交错结构的绣球状 CoS。通过控制合成时间,优化了 CoS 独特设计的形貌和硫空位含量,从而有效地调节了电磁参数。优化后的电磁波吸收材料(EWAM)具有令人满意的电磁波吸收能力,包括在 12.48 GHz 频率下的最小反射损耗(RLmin)为 - 21.27 dB,在厚度为 1.9 mm 时的最大有效吸收带宽(EABmax)为 5.6 GHz。CoS 优越的电磁波吸收性能得益于阻抗匹配、偶极子极化、麦克斯韦尔-瓦格纳效应和导电损耗的协同作用。此外,雷达截面(RCS)模拟结果进一步证明了 CoS EWAM 在实际应用场景中的耗散能力。这种简便的结构设计策略为制备具有高电磁波吸收能力的 CoS 及其他 EWAM 提供了新的方向,具有广泛的实际应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
期刊最新文献
Advances in electrically functional nanocomposites: classification and future prospects Preparation of biofuel from biomass using nanocatalytic-assisted process Heterogeneous structures and morphological transitions of composite materials and its applications Photocatalytic degradation of Toluene by three-dimensional monolithic Titanium Dioxide / Cuprous Oxide foams with Z-schemed Heterojunction Development and characterization of zein/gum Arabic nanocomposites incorporated edible films for improving strawberry preservation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1