Surface treatments on commercial glasses: durable impact on the retention of lead, barium and boron

IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY npj Materials Degradation Pub Date : 2024-10-26 DOI:10.1038/s41529-024-00526-x
L. Brunswic, F. Angeli, S. Gin, E. D. van Hullebusch, M. Tarrago, L. Gautron, D. R. Neuville
{"title":"Surface treatments on commercial glasses: durable impact on the retention of lead, barium and boron","authors":"L. Brunswic, F. Angeli, S. Gin, E. D. van Hullebusch, M. Tarrago, L. Gautron, D. R. Neuville","doi":"10.1038/s41529-024-00526-x","DOIUrl":null,"url":null,"abstract":"Glass durability is one of the properties that can be affected by surface treatments such as coatings or chemical attacks. These treatments can be used to reduce the quantities of potentially toxic elements contained in glass that may be released in solution. Five surface treatments were selected: three different coatings (SnO2, TiO2, SiO2) and two acidic attacks (SO2 dealkalization and acid polishing). These treatments were performed on five glass compositions (soda-lime, borosilicate, barium silicate, opal, and lead crystal). Their effects on alteration rates and mechanisms were investigated through a single protocol (acetic acid 4%, 70 °C) simulating accelerated aging conditions for containers of beverages or food. The data collected over 1.3 years showed significant reduction of lead leaching with all treatments except acid polishing. The best reduction factor was obtained with SO2 dealkalization, which also demonstrated beneficial effects towards the retention of Ba by reducing the diffusion of alkalis.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-12"},"PeriodicalIF":6.6000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00526-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-024-00526-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Glass durability is one of the properties that can be affected by surface treatments such as coatings or chemical attacks. These treatments can be used to reduce the quantities of potentially toxic elements contained in glass that may be released in solution. Five surface treatments were selected: three different coatings (SnO2, TiO2, SiO2) and two acidic attacks (SO2 dealkalization and acid polishing). These treatments were performed on five glass compositions (soda-lime, borosilicate, barium silicate, opal, and lead crystal). Their effects on alteration rates and mechanisms were investigated through a single protocol (acetic acid 4%, 70 °C) simulating accelerated aging conditions for containers of beverages or food. The data collected over 1.3 years showed significant reduction of lead leaching with all treatments except acid polishing. The best reduction factor was obtained with SO2 dealkalization, which also demonstrated beneficial effects towards the retention of Ba by reducing the diffusion of alkalis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
商用玻璃的表面处理:对铅、钡和硼保留的持久影响
玻璃的耐久性是受表面处理(如涂层或化学侵蚀)影响的特性之一。这些处理方法可用于减少玻璃中可能含有的有毒元素在溶液中的释放量。我们选择了五种表面处理方法:三种不同的涂层(SnO2、TiO2、SiO2)和两种酸性侵蚀(SO2 脱醛和酸性抛光)。这些处理对五种玻璃成分(钠钙玻璃、硼硅酸盐玻璃、硅酸钡玻璃、蛋白石玻璃和铅晶玻璃)进行。通过模拟饮料或食品容器加速老化条件的单一方案(醋酸 4%,70 °C),研究了它们对改变速率和机制的影响。1.3 年收集的数据显示,除酸性抛光外,所有处理方法都能显著减少铅的沥滤。二氧化硫脱醛法的降低率最高,同时还通过减少碱的扩散对钡的保留产生了有利影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Materials Degradation
npj Materials Degradation MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.80
自引率
7.80%
发文量
86
审稿时长
6 weeks
期刊介绍: npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure. The journal covers a broad range of topics including but not limited to: -Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli -Computational and experimental studies of degradation mechanisms and kinetics -Characterization of degradation by traditional and emerging techniques -New approaches and technologies for enhancing resistance to degradation -Inspection and monitoring techniques for materials in-service, such as sensing technologies
期刊最新文献
Mechanisms of corrosive freeze-thaw damage in AA7075 using time-resolved x-ray microtomography and correlative electron microscopy Mechanisms of intergranular corrosion and self-healing in high temperature aged lean duplex stainless steel 2404 Feedback effect of the size of mineral particles on the molecular mechanisms employed by Caballeronia mineralivorans PML1(12) to weather minerals Assessing the feasibility of using a data-driven corrosion rate model for optimizing dosages of corrosion inhibitors XGBoost model for the quantitative assessment of stress corrosion cracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1