Paulo Dainese, Louis Marra, Davide Cassara, Ary Portes, Jaewon Oh, Jun Yang, Alfonso Palmieri, Janderson Rocha Rodrigues, Ahmed H. Dorrah, Federico Capasso
{"title":"Shape optimization for high efficiency metasurfaces: theory and implementation","authors":"Paulo Dainese, Louis Marra, Davide Cassara, Ary Portes, Jaewon Oh, Jun Yang, Alfonso Palmieri, Janderson Rocha Rodrigues, Ahmed H. Dorrah, Federico Capasso","doi":"10.1038/s41377-024-01629-5","DOIUrl":null,"url":null,"abstract":"<p>Complex non-local behavior makes designing high efficiency and multifunctional metasurfaces a significant challenge. While using libraries of meta-atoms provide a simple and fast implementation methodology, pillar to pillar interaction often imposes performance limitations. On the other extreme, inverse design based on topology optimization leverages non-local coupling to achieve high efficiency, but leads to complex and difficult to fabricate structures. In this paper, we demonstrate numerically and experimentally a shape optimization method that enables high efficiency metasurfaces while providing direct control of the structure complexity through a Fourier decomposition of the surface gradient. The proposed method provides a path towards manufacturability of inverse-designed high efficiency metasurfaces.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"61 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01629-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Complex non-local behavior makes designing high efficiency and multifunctional metasurfaces a significant challenge. While using libraries of meta-atoms provide a simple and fast implementation methodology, pillar to pillar interaction often imposes performance limitations. On the other extreme, inverse design based on topology optimization leverages non-local coupling to achieve high efficiency, but leads to complex and difficult to fabricate structures. In this paper, we demonstrate numerically and experimentally a shape optimization method that enables high efficiency metasurfaces while providing direct control of the structure complexity through a Fourier decomposition of the surface gradient. The proposed method provides a path towards manufacturability of inverse-designed high efficiency metasurfaces.