Modeling long carbon-chain species formation with porous multiphase models

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Astronomy & Astrophysics Pub Date : 2024-10-25 DOI:10.1051/0004-6361/202450647
Ziwen Song, Qiang Chang, Qingkuan Meng, Xia Zhang
{"title":"Modeling long carbon-chain species formation with porous multiphase models","authors":"Ziwen Song, Qiang Chang, Qingkuan Meng, Xia Zhang","doi":"10.1051/0004-6361/202450647","DOIUrl":null,"url":null,"abstract":"<i>Context.<i/> Recent studies show that multiphase models trap too many volatile species such as CH<sub>4<sub/> inside ice mantles, so they usually underestimate the abundances of long carbon-chain species observed toward warm carbon-chain chemistry (WCCC) sources.<i>Aims.<i/> We propose a new multiphase model that allows more volatile species to diffuse out of the ice mantle upon warming. The new multiphase model is used to study the synthesis of long carbon-chain molecules in WCCC sources.<i>Methods.<i/> We included porous structure in the ice mantles. The porous structure can enlarge the active layers of ice mantles so that fewer volatile species are trapped. The porous multiphase models were simulated using an accelerated Gillespie algorithm.<i>Results.<i/> The abundances of long carbon-chain species predicted by the porous multiphase models can be more than one order of magnitude higher than those predicted by the multiphase model at temperatures relevant to WCCC sources. Moreover, the porous multiphase models predict more abundant long carbon-chain species as the porosity of the ice mantles increases. On the other hand, the two-phase model still estimates higher long carbon-chain species abundances than the porous multiphase models do. The abundances of long carbon-chain species predicted by our porous multiphase models agree reasonably well with observations toward three WCCC sources, L483, L1527, and B228.<i>Conclusions.<i/> Our porous multiphase model solves the problem of too many volatile species being trapped in ice mantles in the multiphase models.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"246 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202450647","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Context. Recent studies show that multiphase models trap too many volatile species such as CH4 inside ice mantles, so they usually underestimate the abundances of long carbon-chain species observed toward warm carbon-chain chemistry (WCCC) sources.Aims. We propose a new multiphase model that allows more volatile species to diffuse out of the ice mantle upon warming. The new multiphase model is used to study the synthesis of long carbon-chain molecules in WCCC sources.Methods. We included porous structure in the ice mantles. The porous structure can enlarge the active layers of ice mantles so that fewer volatile species are trapped. The porous multiphase models were simulated using an accelerated Gillespie algorithm.Results. The abundances of long carbon-chain species predicted by the porous multiphase models can be more than one order of magnitude higher than those predicted by the multiphase model at temperatures relevant to WCCC sources. Moreover, the porous multiphase models predict more abundant long carbon-chain species as the porosity of the ice mantles increases. On the other hand, the two-phase model still estimates higher long carbon-chain species abundances than the porous multiphase models do. The abundances of long carbon-chain species predicted by our porous multiphase models agree reasonably well with observations toward three WCCC sources, L483, L1527, and B228.Conclusions. Our porous multiphase model solves the problem of too many volatile species being trapped in ice mantles in the multiphase models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用多孔多相模型模拟长碳链物种的形成
背景。最近的研究表明,多相模型在冰幔内捕获了太多的挥发性物种(如CH4),因此它们通常低估了在暖碳链化学(WCCC)源中观测到的长碳链物种的丰度。我们提出了一个新的多相模型,允许更多的挥发性物种在变暖时从冰幔中扩散出来。新的多相模型被用于研究长碳链化学源中长碳链分子的合成。我们在冰幔中加入了多孔结构。我们在冰幔中加入了多孔结构,多孔结构可以扩大冰幔的活性层,从而减少挥发性物质的截留。我们使用加速吉莱斯皮算法对多孔多相模型进行了模拟。多孔多相模型预测的长碳链物种丰度比多相模型预测的与世界气候中心源相关温度下的长碳链物种丰度高一个数量级以上。此外,多孔多相模型预测,随着冰幔孔隙度的增加,长碳链物种的含量也会增加。另一方面,两相模型估计的长碳链物种丰度仍然高于多孔多相模型。我们的多孔多相模型预测的长碳链物种丰度与对三个 WCCC 源 L483、L1527 和 B228 的观测结果相当吻合。我们的多孔多相模型解决了多相模型中太多挥发性物种被困在冰幔中的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
期刊最新文献
The counter-rotating stellar core of NGC 4494 Analysis of the possible detection of the pulsar wind nebulae of PSR J1208-6238, J1341-6220, J1838-0537, and J1844-0346 OGLE-BLAP-001 and ZGP-BLAP-08: Two possible magnetic blue large-amplitude pulsators⋆ Three-part structure of a solar coronal mass ejection observed in low coronal signatures of Solar Orbiter CHEX-MATE: The intracluster medium entropy distribution in the gravity-dominated regime
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1