Jie Wang, Binquan Wang, Geng Huangfu, Hongjie Zhang, Yiping Guo
{"title":"Boosting Low-E electro-strain via high-electronegativity B-site substitution in lead-free K0.5Na0.5NbO3-based ceramics","authors":"Jie Wang, Binquan Wang, Geng Huangfu, Hongjie Zhang, Yiping Guo","doi":"10.1016/j.actamat.2024.120520","DOIUrl":null,"url":null,"abstract":"<div><div>Lead-free piezoelectric actuators emerge as promising substitutes for their lead-containing counterparts to address environmental concerns. However, they often confront a trade-off between low driving electric fields and high electro-strain. Herein, a novel strategy to boost electro-strain under low electric fields is proposed by doping high-electronegativity B-site atoms into perovskite potassium sodium niobate-based ceramics. Our findings reveal that high-electronegativity B-site atoms elevate the covalency of B-O bonding, softening the short-range repulsion and introducing local multiphase coexistence. This leads to more nanoscale domain structures and lower coercive field, thereby enabling large strains to be produced at lower electric fields. Notably, a substantial 0.2 % bipolar electro-strain and 0.1 % unipolar electro-strain under 10 kV cm<sup>-1</sup> is achieved in Sr, Sb co-doped potassium sodium niobate ceramics, with a broad working frequency and temperature range, as well as excellent fatigue resistance. This study unveils innovative insights into designing lead-free piezoelectric ceramics with remarkable electro-strain performance and low driving electric field, promising a significant advancement in lead-free piezoelectric materials science and piezoelectric actuators.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"282 ","pages":"Article 120520"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645424008693","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lead-free piezoelectric actuators emerge as promising substitutes for their lead-containing counterparts to address environmental concerns. However, they often confront a trade-off between low driving electric fields and high electro-strain. Herein, a novel strategy to boost electro-strain under low electric fields is proposed by doping high-electronegativity B-site atoms into perovskite potassium sodium niobate-based ceramics. Our findings reveal that high-electronegativity B-site atoms elevate the covalency of B-O bonding, softening the short-range repulsion and introducing local multiphase coexistence. This leads to more nanoscale domain structures and lower coercive field, thereby enabling large strains to be produced at lower electric fields. Notably, a substantial 0.2 % bipolar electro-strain and 0.1 % unipolar electro-strain under 10 kV cm-1 is achieved in Sr, Sb co-doped potassium sodium niobate ceramics, with a broad working frequency and temperature range, as well as excellent fatigue resistance. This study unveils innovative insights into designing lead-free piezoelectric ceramics with remarkable electro-strain performance and low driving electric field, promising a significant advancement in lead-free piezoelectric materials science and piezoelectric actuators.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.