Youqing Sun , Zhongfu Cheng , K. Vijay Reddy , Diqiu He , Ensieh Yousefi , Miral Verma , Nele Moelans , Muxing Guo , David Seveno
{"title":"Step flow mechanism in dissolutive wetting Cu/Ni systems","authors":"Youqing Sun , Zhongfu Cheng , K. Vijay Reddy , Diqiu He , Ensieh Yousefi , Miral Verma , Nele Moelans , Muxing Guo , David Seveno","doi":"10.1016/j.actamat.2024.120519","DOIUrl":null,"url":null,"abstract":"<div><div>The Cu-Ni system is a typical dissolutive system due to its mutual dissolution across a wide range of temperatures and compositions. We characterized the effects of Ni dissolution on the wetting behavior of liquid Cu by combining high-temperature wetting experiments, in-situ observation of spreading and solidification, microstructure analysis of the quenched droplets, and computational fluid dynamic (CFD) simulations. In the very early moment, at 1100 °C, when the Cu droplet is brought in contact with the Ni substrate, it oscillates due to capillarity and is dampened by inertial effects, while the significant Ni dissolution at 1150 °C largely reduced the initial oscillations. Later, a peculiar spreading behavior is observed and we propose to describe it through a 4-step mechanism: pinning of the contact line by a newly formed solid solution layer at the interface acting as a physical barrier, driving of liquid towards the solidified edge due to a Ni-concentration induced Marangoni flow, forming of a precursor film ahead of the solidified edge caused by the strong Cu-Ni interactions and Marangoni flow, and finally depinning due to overflow as a result of liquid accumulation at the solidified edge. The formation of a solid solution layer is confirmed by in-situ observation and quenching. The Ni-concentration induced Marangoni flow is characterized experimentally and further investigated by CFD simulations. The proposed step flow mechanism can be potentially relevant to other dissolutive wetting systems (e.g. Bi/Sn, Ag/Cu and Cu/Fe systems), which are crucial for high-temperature processing techniques.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"282 ","pages":"Article 120519"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645424008681","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Cu-Ni system is a typical dissolutive system due to its mutual dissolution across a wide range of temperatures and compositions. We characterized the effects of Ni dissolution on the wetting behavior of liquid Cu by combining high-temperature wetting experiments, in-situ observation of spreading and solidification, microstructure analysis of the quenched droplets, and computational fluid dynamic (CFD) simulations. In the very early moment, at 1100 °C, when the Cu droplet is brought in contact with the Ni substrate, it oscillates due to capillarity and is dampened by inertial effects, while the significant Ni dissolution at 1150 °C largely reduced the initial oscillations. Later, a peculiar spreading behavior is observed and we propose to describe it through a 4-step mechanism: pinning of the contact line by a newly formed solid solution layer at the interface acting as a physical barrier, driving of liquid towards the solidified edge due to a Ni-concentration induced Marangoni flow, forming of a precursor film ahead of the solidified edge caused by the strong Cu-Ni interactions and Marangoni flow, and finally depinning due to overflow as a result of liquid accumulation at the solidified edge. The formation of a solid solution layer is confirmed by in-situ observation and quenching. The Ni-concentration induced Marangoni flow is characterized experimentally and further investigated by CFD simulations. The proposed step flow mechanism can be potentially relevant to other dissolutive wetting systems (e.g. Bi/Sn, Ag/Cu and Cu/Fe systems), which are crucial for high-temperature processing techniques.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.