Hyeonggeun Choi, Seunghwan Jo, Ki Hoon Shin, HeeYoung Lim, Liting Zhang, Keon Beom Lee, Young-Woo Lee, Jung Inn Sohn
{"title":"Highly active and durable NiMoCuCo catalyst with moderated hydroxide adsorption energy for efficient hydrogen evolution reaction","authors":"Hyeonggeun Choi, Seunghwan Jo, Ki Hoon Shin, HeeYoung Lim, Liting Zhang, Keon Beom Lee, Young-Woo Lee, Jung Inn Sohn","doi":"10.1039/d4qi01947d","DOIUrl":null,"url":null,"abstract":"Nonprecious NiMo composites are promising hydrogen evolution reaction electrocatalysts due to their Pt-like catalytic surface. However, because of hydroxide adsorption in alkaline media, the oxidative elution of Mo deteriorates structural and catalytic stability. Herein, Cu and Co incorporated NiMo composite (NiMoCuCo) is prepared as an active and durable hydrogen evolution reaction (HER) electrocatalyst by direct electrochemical deposition. The low electronegativities of Cu and Co effectively reduce the charge valence state of metals and the zeta potential of electrocatalysts, ameliorating the surface electronegativity. NiMoCuCo shows a low overpotential of 53 mV at a current density of 10 mA cm−2 and a slight overpotential increase of 0.01 mV h−1 (1.8 %) after long-term stability test for 100 h at a current density of 100 mA cm−2, outperforming the NiMo and NiMoCu. Ex-situ analyses demonstrate that the NiMoCuCo exhibits a reduced charge valence state of Mo without significant degradation after the long-term stability test. Furthermore, Co in the NiMoCuCo acts as the OH adsorption site on behalf of Mo, owing to the reduced surface electronegativity of Mo and strong OH affinity. This results in the balance between the water dissociation and HER kinetics of NiMo composites, leading to excellent HER activity and stability.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi01947d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nonprecious NiMo composites are promising hydrogen evolution reaction electrocatalysts due to their Pt-like catalytic surface. However, because of hydroxide adsorption in alkaline media, the oxidative elution of Mo deteriorates structural and catalytic stability. Herein, Cu and Co incorporated NiMo composite (NiMoCuCo) is prepared as an active and durable hydrogen evolution reaction (HER) electrocatalyst by direct electrochemical deposition. The low electronegativities of Cu and Co effectively reduce the charge valence state of metals and the zeta potential of electrocatalysts, ameliorating the surface electronegativity. NiMoCuCo shows a low overpotential of 53 mV at a current density of 10 mA cm−2 and a slight overpotential increase of 0.01 mV h−1 (1.8 %) after long-term stability test for 100 h at a current density of 100 mA cm−2, outperforming the NiMo and NiMoCu. Ex-situ analyses demonstrate that the NiMoCuCo exhibits a reduced charge valence state of Mo without significant degradation after the long-term stability test. Furthermore, Co in the NiMoCuCo acts as the OH adsorption site on behalf of Mo, owing to the reduced surface electronegativity of Mo and strong OH affinity. This results in the balance between the water dissociation and HER kinetics of NiMo composites, leading to excellent HER activity and stability.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.