Ruyi Bi, Jilu Zhao, Mei Yang, Jiangyan Wang, Ranbo Yu, Dan Wang
{"title":"Multifunctional separator modified with catalytic multishelled structural CoS2 enables stable lithium-sulfur battery","authors":"Ruyi Bi, Jilu Zhao, Mei Yang, Jiangyan Wang, Ranbo Yu, Dan Wang","doi":"10.1039/d4qi02340d","DOIUrl":null,"url":null,"abstract":"Lithium-sulfur battery has been considered as a promising next-generation energy storage device, due to its ultrahigh theoretical energy density and natural abundance of sulfur. However, the shuttle effect and sluggish redox kinetics of polysulfides hinder its commercial application. Herein, by combing the wise of material design and structure engineering, CoS<small><sub>2</sub></small> hollow multishelled structure (HoMS) is developed to modify separator and also to establish a “vice electrode”, which effectively hinders shuttle effect and catalyzes the redox reactions. CoS<small><sub>2</sub></small> HoMS can not only obstruct polysulfides through multiple shell barriers, but also provides a large available polar surface to effectively capture polysulfides. Additionally, CoS<small><sub>2</sub></small> HoMS with a good conductivity could greatly accelerates the redox conversion of polysulfides and enhances the decomposition of Li<small><sub>2</sub></small>S. Moreover, these CoS<small><sub>2</sub></small> HoMS can buffer the large volume change of sulfur during cycling and ensure good contact and stability of electrodes. As a result, lithium-sulfur battery with CoS<small><sub>2</sub></small> HoMS modified separator exhibited a high discharge capacity of 873.1 mAh g<small><sub>−1</sub></small> at a high rate of 1 C and delivered only 0.054% of capacity decay per cycle during 350 cycles.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi02340d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium-sulfur battery has been considered as a promising next-generation energy storage device, due to its ultrahigh theoretical energy density and natural abundance of sulfur. However, the shuttle effect and sluggish redox kinetics of polysulfides hinder its commercial application. Herein, by combing the wise of material design and structure engineering, CoS2 hollow multishelled structure (HoMS) is developed to modify separator and also to establish a “vice electrode”, which effectively hinders shuttle effect and catalyzes the redox reactions. CoS2 HoMS can not only obstruct polysulfides through multiple shell barriers, but also provides a large available polar surface to effectively capture polysulfides. Additionally, CoS2 HoMS with a good conductivity could greatly accelerates the redox conversion of polysulfides and enhances the decomposition of Li2S. Moreover, these CoS2 HoMS can buffer the large volume change of sulfur during cycling and ensure good contact and stability of electrodes. As a result, lithium-sulfur battery with CoS2 HoMS modified separator exhibited a high discharge capacity of 873.1 mAh g−1 at a high rate of 1 C and delivered only 0.054% of capacity decay per cycle during 350 cycles.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.