Mingchen Yao , Anran Ren , Xiangyu Yang , Lihua Chen , Xun Wang , Walter van der Meer , Mark C.M. van Loosdrecht , Gang Liu , Martin Pabst
{"title":"Unveiling the influence of heating temperature on biofilm formation in shower hoses through multi-omics","authors":"Mingchen Yao , Anran Ren , Xiangyu Yang , Lihua Chen , Xun Wang , Walter van der Meer , Mark C.M. van Loosdrecht , Gang Liu , Martin Pabst","doi":"10.1016/j.watres.2024.122704","DOIUrl":null,"url":null,"abstract":"<div><div>Shower systems provide unique environments that are conducive to biofilm formation and the proliferation of pathogens. The water heating temperature is a delicate decision that can impact microbial growth, balancing safety and energy consumption. This study investigated the impact of different heating temperatures (39 °C, 45 °C, 51 °C and 58 °C) on the shower hose biofilm (exposed to a final water temperature of 39 °C) using controlled full-scale shower setups. Whole metagenome sequencing and metaproteomics were employed to unveil the microbial composition and protein expression profiles. Overall, the genes and enzymes associated with disinfectant resistance and biofilm formation appeared largely unaffected. However, metagenomic analysis revealed a sharp decline in the number of total (86,371 to 34,550) and unique genes (32,279 to 137) with the increase in hot water temperature, indicating a significant reduction of overall microbial complexity. None of the unique proteins were detected in the proteomics experiments, suggesting smaller variation among biofilms on the proteome level compared to genomic data. Furthermore, out of 43 pathogens detected by metagenomics, only 5 could actually be detected by metaproteomics. Most interestingly, our study indicates that 45 °C heating temperature may represent an optimal balance. It minimizes active biomass (ATP) and reduces the presence of pathogens while saving heating energy. Our study offered new insights into the impact of heating temperature on shower hose biofilm formation and proposed optimal parameters that ensure biosafety while conserving energy.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"268 ","pages":"Article 122704"},"PeriodicalIF":11.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135424016038","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Shower systems provide unique environments that are conducive to biofilm formation and the proliferation of pathogens. The water heating temperature is a delicate decision that can impact microbial growth, balancing safety and energy consumption. This study investigated the impact of different heating temperatures (39 °C, 45 °C, 51 °C and 58 °C) on the shower hose biofilm (exposed to a final water temperature of 39 °C) using controlled full-scale shower setups. Whole metagenome sequencing and metaproteomics were employed to unveil the microbial composition and protein expression profiles. Overall, the genes and enzymes associated with disinfectant resistance and biofilm formation appeared largely unaffected. However, metagenomic analysis revealed a sharp decline in the number of total (86,371 to 34,550) and unique genes (32,279 to 137) with the increase in hot water temperature, indicating a significant reduction of overall microbial complexity. None of the unique proteins were detected in the proteomics experiments, suggesting smaller variation among biofilms on the proteome level compared to genomic data. Furthermore, out of 43 pathogens detected by metagenomics, only 5 could actually be detected by metaproteomics. Most interestingly, our study indicates that 45 °C heating temperature may represent an optimal balance. It minimizes active biomass (ATP) and reduces the presence of pathogens while saving heating energy. Our study offered new insights into the impact of heating temperature on shower hose biofilm formation and proposed optimal parameters that ensure biosafety while conserving energy.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.