Nonhalogenated Solvent-Processed Efficient Ternary All-Polymer Solar Cells Enabled by the Introduction of a Naphthyloxy Group into the Side Chain of Polymer Donors.
Priyanka Yadav, Hyerin Kim, Thavamani Gokulnath, Jin Soo Yoo, Myeong Jin Jeon, Raja Kumaresan, Ho-Yeol Park, Sung-Ho Jin
{"title":"Nonhalogenated Solvent-Processed Efficient Ternary All-Polymer Solar Cells Enabled by the Introduction of a Naphthyloxy Group into the Side Chain of Polymer Donors.","authors":"Priyanka Yadav, Hyerin Kim, Thavamani Gokulnath, Jin Soo Yoo, Myeong Jin Jeon, Raja Kumaresan, Ho-Yeol Park, Sung-Ho Jin","doi":"10.1021/acsami.4c13569","DOIUrl":null,"url":null,"abstract":"<p><p>Conjugated polymer donors are crucial for enhancing the power conversion efficiencies (PCEs) in all-polymer solar cells (All-PSCs) in nonhalogenated solvents. In this work, three wide-band-gap polymer donors (Sil-D1, Ph-Sil-D1, and Nap-Sil-D1) based on dithienobenzothiadiazole (DTBT) and benzodithiophene (BDT) donor moieties optimized by side chain engineering were designed and synthesized. Alkyl (Sil-D1), phenyloxy (Ph-Sil-D1), and naphthyloxy (Nap-Sil-D1) alkyl siloxane side chain units were incorporated into these polymer donors, respectively. Notably, the Nap-Sil-D1 polymer donor had a greater conjugation length, π-electron delocalization, and improved dipole moment. The deepest highest occupied molecular orbital level of Nap-Sil-D1, with a high absorption coefficient, showed better aggregation properties. In addition, reduced bimolecular recombination and trap-state density generated a high charge transfer to cause a significant enhancement of open-circuit voltage, current density, and fill factor values of 0.94 V, 25.5 mA/cm<sup>2</sup>, and 70.4%, respectively, for the Nap-Sil-D1-blended All-PSC ternary device (PM6:Nap-Sil-D1:PY-IT), with the highest PCE of 16.8% in the <i>o</i>-xylene solvent, compared to other polymers (Sil-D1 and Ph-Sil-D1) with PCEs of 15.5 and 16.2%. As a result, this optimized device architecture was found to be the most promising as a nonhalogenated solvent processed in additive-free ternary All-PSCs with good stability.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c13569","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Conjugated polymer donors are crucial for enhancing the power conversion efficiencies (PCEs) in all-polymer solar cells (All-PSCs) in nonhalogenated solvents. In this work, three wide-band-gap polymer donors (Sil-D1, Ph-Sil-D1, and Nap-Sil-D1) based on dithienobenzothiadiazole (DTBT) and benzodithiophene (BDT) donor moieties optimized by side chain engineering were designed and synthesized. Alkyl (Sil-D1), phenyloxy (Ph-Sil-D1), and naphthyloxy (Nap-Sil-D1) alkyl siloxane side chain units were incorporated into these polymer donors, respectively. Notably, the Nap-Sil-D1 polymer donor had a greater conjugation length, π-electron delocalization, and improved dipole moment. The deepest highest occupied molecular orbital level of Nap-Sil-D1, with a high absorption coefficient, showed better aggregation properties. In addition, reduced bimolecular recombination and trap-state density generated a high charge transfer to cause a significant enhancement of open-circuit voltage, current density, and fill factor values of 0.94 V, 25.5 mA/cm2, and 70.4%, respectively, for the Nap-Sil-D1-blended All-PSC ternary device (PM6:Nap-Sil-D1:PY-IT), with the highest PCE of 16.8% in the o-xylene solvent, compared to other polymers (Sil-D1 and Ph-Sil-D1) with PCEs of 15.5 and 16.2%. As a result, this optimized device architecture was found to be the most promising as a nonhalogenated solvent processed in additive-free ternary All-PSCs with good stability.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture