Electrically switched asymmetric interfaces for liquid manipulation.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Horizons Pub Date : 2024-10-29 DOI:10.1039/d4mh01227e
Ke Li, Yuliang Li, Qiuya Zhang, Honghao Li, Wentao Zou, Lu Li, Yan Li, Xiaofang Zhang, Dongliang Tian, Lei Jiang
{"title":"Electrically switched asymmetric interfaces for liquid manipulation.","authors":"Ke Li, Yuliang Li, Qiuya Zhang, Honghao Li, Wentao Zou, Lu Li, Yan Li, Xiaofang Zhang, Dongliang Tian, Lei Jiang","doi":"10.1039/d4mh01227e","DOIUrl":null,"url":null,"abstract":"<p><p>External field driven fluid manipulation, in particular electric field, offers the advantages of real-time control and exceptional flexibility, rendering it highly promising for applications in microfluidic devices, liquid separation and energy catalysis. However, it is still challenging for controlled liquid transport and fine control of droplet splitting. Herein, we demonstrate a strategy to achieve direction-controlled liquid transport and fine droplet splitting on an anisotropic groove-microstructured electrode surface <i>via</i> an electrically switched asymmetric interface. The balance of asymmetric capillary force generated by microstructures and electro-capillary force is critical in determining directional liquid transport and fine droplet splitting. Asymmetric bubbles generated by liquid electrolysis form an asymmetric liquid-gas-solid interface and result in gradient liquid wetting behavior on the two neighboring electrode surfaces. The electric field further enhances the asymmetric wetting of a liquid droplet on the electrode surface, exhibiting electric field direction-dependent motion. Moreover, the groove-microstructured electrode surface can strengthen the liquid droplet anisotropic wetting and correspondingly refine the volume range of the splitting sub-droplet. Even unidirectional/bidirectional liquid droplet transport can be controlled in collaboration with the asymmetric groove-microstructure and electric field. Thus, this work provides a new route for liquid transport and droplet splitting, showing great potential in controllable separation, microreaction and microfluidic devices.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01227e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

External field driven fluid manipulation, in particular electric field, offers the advantages of real-time control and exceptional flexibility, rendering it highly promising for applications in microfluidic devices, liquid separation and energy catalysis. However, it is still challenging for controlled liquid transport and fine control of droplet splitting. Herein, we demonstrate a strategy to achieve direction-controlled liquid transport and fine droplet splitting on an anisotropic groove-microstructured electrode surface via an electrically switched asymmetric interface. The balance of asymmetric capillary force generated by microstructures and electro-capillary force is critical in determining directional liquid transport and fine droplet splitting. Asymmetric bubbles generated by liquid electrolysis form an asymmetric liquid-gas-solid interface and result in gradient liquid wetting behavior on the two neighboring electrode surfaces. The electric field further enhances the asymmetric wetting of a liquid droplet on the electrode surface, exhibiting electric field direction-dependent motion. Moreover, the groove-microstructured electrode surface can strengthen the liquid droplet anisotropic wetting and correspondingly refine the volume range of the splitting sub-droplet. Even unidirectional/bidirectional liquid droplet transport can be controlled in collaboration with the asymmetric groove-microstructure and electric field. Thus, this work provides a new route for liquid transport and droplet splitting, showing great potential in controllable separation, microreaction and microfluidic devices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于液体操作的电开关不对称界面。
外场驱动的流体操纵(尤其是电场)具有实时控制和灵活性强的优点,因此在微流体设备、液体分离和能源催化方面的应用前景十分广阔。然而,它在受控液体传输和液滴分裂的精细控制方面仍具有挑战性。在此,我们展示了一种通过电开关非对称界面在各向异性沟槽微结构电极表面实现液体传输方向控制和液滴精细分裂的策略。微结构产生的非对称毛细管力与电毛细管力之间的平衡是决定液体定向传输和细微液滴分裂的关键。液体电解产生的非对称气泡形成了非对称的液-气-固界面,并导致两个相邻电极表面的梯度液体润湿行为。电场进一步增强了电极表面液滴的非对称润湿,并表现出与电场方向相关的运动。此外,凹槽微结构电极表面还能加强液滴的各向异性润湿,并相应地细化分裂子液滴的体积范围。在非对称沟槽微结构和电场的配合下,甚至可以控制液滴的单向/双向传输。因此,这项工作为液体传输和液滴分裂提供了一条新途径,在可控分离、微反应和微流体设备方面显示出巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
期刊最新文献
A high-resolution 3D radiochromic hydrogel photonic crystal dosimeter for clinical radiotherapy. Top-down architecture of magnetized micro-cilia and conductive micro-domes as fully bionic electronic skin for de-coupled multidimensional tactile perception. Correction: Application of carbon-based nanomaterials in Alzheimer's disease. Multifunctional acoustic and mechanical metamaterials prepared from continuous CFRP composites. Progress and perspectives of rapid Joule heating for the preparation of highly efficient catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1