{"title":"Recent advances in the enantioselective synthesis of chiral sulfones <i>via</i> asymmetric hydrogenation.","authors":"Xiaoxue Wu, Guohua Hou","doi":"10.1039/d4ob01515k","DOIUrl":null,"url":null,"abstract":"<p><p>Chiral sulfones are key structural motifs that extensively exist in natural products, drugs, and biologically active compounds. During the past few decades, rapid development has been made with respect to the highly enantioselective synthesis of chiral sulfones, in which the catalytic asymmetric hydrogenation of unsaturated sulfones provides an efficient and powerful methodology to construct chiral sulfones and their derivatives. This review highlights the progress achieved in transition metal (ruthenium, rhodium, iridium, and nickel) catalyzed direct asymmetric hydrogenation of a variety of unsaturated sulfones from the aspects of the substrate scope, catalytic mechanisms, and applications in the synthesis of biologically active molecules.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ob01515k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Chiral sulfones are key structural motifs that extensively exist in natural products, drugs, and biologically active compounds. During the past few decades, rapid development has been made with respect to the highly enantioselective synthesis of chiral sulfones, in which the catalytic asymmetric hydrogenation of unsaturated sulfones provides an efficient and powerful methodology to construct chiral sulfones and their derivatives. This review highlights the progress achieved in transition metal (ruthenium, rhodium, iridium, and nickel) catalyzed direct asymmetric hydrogenation of a variety of unsaturated sulfones from the aspects of the substrate scope, catalytic mechanisms, and applications in the synthesis of biologically active molecules.