{"title":"Proposing adjustments to heat safety thresholds for junior high and high school sports clubs in Japan.","authors":"Takahiro Oyama, Yasushi Honda, Minoru Fujii, Kenichi Nakajima, Yasuaki Hijioka","doi":"10.1007/s00484-024-02812-4","DOIUrl":null,"url":null,"abstract":"<p><p>With higher temperatures expected in the future due to global climate change, addressing health risks such as heat illness is increasingly important. In Japan, thousands of heat illness cases occur annually during school sports club activities. The risk may vary by sport, location, and region, but how heat safety thresholds (HSTs) should be adjusted to provide effective guidelines remains uncertain. Thus, we conducted a case-crossover study using data of heat illness cases and wet-bulb globe temperature (WBGT) throughout Japan to evaluate the heat illness risk for the current HSTs and propose adjustments. A significant relationship was found between heat illness incidence and WBGT at the time of the incident, as well as the average WBGT one and two days prior. The risk significantly varies with factors such as club, region, location, year, month, and the average WBGT in summer. Therefore, we recommend lowering the current HSTs by one category (3 °C) in the following cases: (1) clubs at high risk (baseball, softball, soccer/futsal, tennis, track and field, kyudo, and other with sustained exercise or thick uniforms); (2) from April to June; (3) in cooler regions (Hokkaido, Tohoku, Hokuriku, or where the average WBGT in summer≦18℃); (4) for outdoor activities; (5) when heat rapidly increases without adequate heat acclimatization. These findings may inform educators, students, sports authorities, and policymakers in adjusting HSTs to reduce the incidence of heat illness, thereby ensuring safer environments for school sports activities.</p>","PeriodicalId":588,"journal":{"name":"International Journal of Biometeorology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biometeorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00484-024-02812-4","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
With higher temperatures expected in the future due to global climate change, addressing health risks such as heat illness is increasingly important. In Japan, thousands of heat illness cases occur annually during school sports club activities. The risk may vary by sport, location, and region, but how heat safety thresholds (HSTs) should be adjusted to provide effective guidelines remains uncertain. Thus, we conducted a case-crossover study using data of heat illness cases and wet-bulb globe temperature (WBGT) throughout Japan to evaluate the heat illness risk for the current HSTs and propose adjustments. A significant relationship was found between heat illness incidence and WBGT at the time of the incident, as well as the average WBGT one and two days prior. The risk significantly varies with factors such as club, region, location, year, month, and the average WBGT in summer. Therefore, we recommend lowering the current HSTs by one category (3 °C) in the following cases: (1) clubs at high risk (baseball, softball, soccer/futsal, tennis, track and field, kyudo, and other with sustained exercise or thick uniforms); (2) from April to June; (3) in cooler regions (Hokkaido, Tohoku, Hokuriku, or where the average WBGT in summer≦18℃); (4) for outdoor activities; (5) when heat rapidly increases without adequate heat acclimatization. These findings may inform educators, students, sports authorities, and policymakers in adjusting HSTs to reduce the incidence of heat illness, thereby ensuring safer environments for school sports activities.
期刊介绍:
The Journal publishes original research papers, review articles and short communications on studies examining the interactions between living organisms and factors of the natural and artificial atmospheric environment.
Living organisms extend from single cell organisms, to plants and animals, including humans. The atmospheric environment includes climate and weather, electromagnetic radiation, and chemical and biological pollutants. The journal embraces basic and applied research and practical aspects such as living conditions, agriculture, forestry, and health.
The journal is published for the International Society of Biometeorology, and most membership categories include a subscription to the Journal.