Graphene oxide in low concentrations can change mitochondrial potential, autophagy, and apoptosis paths in two strains of invertebrates with different life strategies
Barbara Flasz , Agnieszka Babczyńska , Monika Tarnawska , Amrendra K. Ajay , Andrzej Kędziorski , Łukasz Napora-Rutkowski , Maria Augustyniak
{"title":"Graphene oxide in low concentrations can change mitochondrial potential, autophagy, and apoptosis paths in two strains of invertebrates with different life strategies","authors":"Barbara Flasz , Agnieszka Babczyńska , Monika Tarnawska , Amrendra K. Ajay , Andrzej Kędziorski , Łukasz Napora-Rutkowski , Maria Augustyniak","doi":"10.1016/j.bbrc.2024.150898","DOIUrl":null,"url":null,"abstract":"<div><div>Nanoparticles, like graphene oxide (GO), are particles with unique physiochemical properties that enable their wide application in various areas of life. The effects of GO on individual cell organelles like mitochondria and the effects of interactions are worth investigating, as they can activate multiple cellular processes, such as autophagy or apoptosis. Mitochondrial injury plays an essential role in the majority of cell death routines. In the project, we investigated cell health status measured as mitochondrial inner membrane depolarization, autophagy, and apoptosis induction during long-term GO administration in food (0.02 μg g<sup>−1</sup> and 0.2 μg g<sup>−1</sup> of food). Two unique <em>Acheta domesticus</em> strains that differ in life strategy were used: wild-type and long-lived at three different life stages (larva, young adult, mature adult). The changes in mitochondrial <em>trans</em>-membrane potential were marked in the wild-type strain. The autophagy was lower in all GO-treated groups in both strains, and the apoptosis was lower in both strains in the mature adult crickets. Low GO concentrations treatment for the whole life, despite mitochondrial dysfunction, may lead to inhibition of autophagy and apoptosis by arresting the cell cycle for the duration of repair, and other repair tools are involved in the process of restoring homeostasis.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24014347","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoparticles, like graphene oxide (GO), are particles with unique physiochemical properties that enable their wide application in various areas of life. The effects of GO on individual cell organelles like mitochondria and the effects of interactions are worth investigating, as they can activate multiple cellular processes, such as autophagy or apoptosis. Mitochondrial injury plays an essential role in the majority of cell death routines. In the project, we investigated cell health status measured as mitochondrial inner membrane depolarization, autophagy, and apoptosis induction during long-term GO administration in food (0.02 μg g−1 and 0.2 μg g−1 of food). Two unique Acheta domesticus strains that differ in life strategy were used: wild-type and long-lived at three different life stages (larva, young adult, mature adult). The changes in mitochondrial trans-membrane potential were marked in the wild-type strain. The autophagy was lower in all GO-treated groups in both strains, and the apoptosis was lower in both strains in the mature adult crickets. Low GO concentrations treatment for the whole life, despite mitochondrial dysfunction, may lead to inhibition of autophagy and apoptosis by arresting the cell cycle for the duration of repair, and other repair tools are involved in the process of restoring homeostasis.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics