Gene Expression Profiling Regulated by lncRNA H19 Using Bioinformatic Analyses in Glioma Cell Lines.

IF 2.6 4区 医学 Q2 GENETICS & HEREDITY Cancer Genomics & Proteomics Pub Date : 2024-11-01 DOI:10.21873/cgp.20477
Yeonsoo Chae, Jungwook Roh, Mijung Im, Wonyi Jang, Boseong Kim, Jihoon Kang, Buhyun Youn, Wanyeon Kim
{"title":"Gene Expression Profiling Regulated by lncRNA H19 Using Bioinformatic Analyses in Glioma Cell Lines.","authors":"Yeonsoo Chae, Jungwook Roh, Mijung Im, Wonyi Jang, Boseong Kim, Jihoon Kang, Buhyun Youn, Wanyeon Kim","doi":"10.21873/cgp.20477","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aim: </strong>Glioma, the most common type of primary brain tumor, is characterized by high malignancy, recurrence, and mortality. Long non-coding RNA (lncRNA) H19 is a potential biomarker for glioma diagnosis and treatment due to its overexpression in human glioma tissues and its involvement in cell division and metastasis regulation. This study aimed to identify potential therapeutic targets involved in glioma development by analyzing gene expression profiles regulated by H19.</p><p><strong>Materials and methods: </strong>To elucidate the role of H19 in A172 and U87MG glioma cell lines, cell counting, colony formation, and wound healing assays were conducted. RNA-seq data analysis and bioinformatics analyses were performed to reveal the molecular interactions of H19.</p><p><strong>Results: </strong>Cell-based experiments showed that elevated H19 levels were related to cancer cell survival, proliferation, and migration. Bioinformatics analyses identified 2,084 differentially expressed genes (DEGs) influenced by H19 which are involved in cancer progression. Specifically, ANXA5, CLEC18B, RAB42, CXCL8, OASL, USP18, and CDCP1 were positively correlated with H19 expression, while CSDC2 and FOXO4 were negatively correlated. These DEGs were predicted to function as oncogenes or tumor suppressors in gliomas, in association with H19.</p><p><strong>Conclusion: </strong>These findings highlight H19 and its associated genes as potential diagnostic and therapeutic targets for gliomas, emphasizing their clinical significance in patient survival.</p>","PeriodicalId":9516,"journal":{"name":"Cancer Genomics & Proteomics","volume":"21 6","pages":"608-621"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534032/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Genomics & Proteomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.21873/cgp.20477","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/aim: Glioma, the most common type of primary brain tumor, is characterized by high malignancy, recurrence, and mortality. Long non-coding RNA (lncRNA) H19 is a potential biomarker for glioma diagnosis and treatment due to its overexpression in human glioma tissues and its involvement in cell division and metastasis regulation. This study aimed to identify potential therapeutic targets involved in glioma development by analyzing gene expression profiles regulated by H19.

Materials and methods: To elucidate the role of H19 in A172 and U87MG glioma cell lines, cell counting, colony formation, and wound healing assays were conducted. RNA-seq data analysis and bioinformatics analyses were performed to reveal the molecular interactions of H19.

Results: Cell-based experiments showed that elevated H19 levels were related to cancer cell survival, proliferation, and migration. Bioinformatics analyses identified 2,084 differentially expressed genes (DEGs) influenced by H19 which are involved in cancer progression. Specifically, ANXA5, CLEC18B, RAB42, CXCL8, OASL, USP18, and CDCP1 were positively correlated with H19 expression, while CSDC2 and FOXO4 were negatively correlated. These DEGs were predicted to function as oncogenes or tumor suppressors in gliomas, in association with H19.

Conclusion: These findings highlight H19 and its associated genes as potential diagnostic and therapeutic targets for gliomas, emphasizing their clinical significance in patient survival.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用生物信息学分析脑胶质瘤细胞系中受 lncRNA H19 调控的基因表达谱。
背景/目的:胶质瘤是最常见的原发性脑肿瘤,具有恶性程度高、复发率高和死亡率高的特点。长非编码 RNA(lncRNA)H19 是胶质瘤诊断和治疗的潜在生物标志物,因为它在人类胶质瘤组织中过度表达,并参与细胞分裂和转移调控。本研究旨在通过分析 H19 调控的基因表达谱,确定参与胶质瘤发展的潜在治疗靶点:为了阐明H19在A172和U87MG胶质瘤细胞系中的作用,研究人员进行了细胞计数、集落形成和伤口愈合试验。进行了 RNA-seq 数据分析和生物信息学分析,以揭示 H19 的分子相互作用:基于细胞的实验表明,H19水平的升高与癌细胞的存活、增殖和迁移有关。生物信息学分析发现了 2,084 个受 H19 影响的差异表达基因(DEGs),这些基因参与了癌症进展。具体来说,ANXA5、CLEC18B、RAB42、CXCL8、OASL、USP18和CDCP1与H19的表达呈正相关,而CSDC2和FOXO4呈负相关。预测这些 DEGs 与 H19 相关,可在胶质瘤中发挥致癌基因或肿瘤抑制因子的作用:这些发现强调了H19及其相关基因是胶质瘤潜在的诊断和治疗靶点,并强调了它们对患者生存的临床意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer Genomics & Proteomics
Cancer Genomics & Proteomics ONCOLOGY-GENETICS & HEREDITY
CiteScore
5.00
自引率
8.00%
发文量
51
期刊介绍: Cancer Genomics & Proteomics (CGP) is an international peer-reviewed journal designed to publish rapidly high quality articles and reviews on the application of genomic and proteomic technology to basic, experimental and clinical cancer research. In this site you may find information concerning the editorial board, editorial policy, issue contents, subscriptions, submission of manuscripts and advertising. The first issue of CGP circulated in January 2004. Cancer Genomics & Proteomics is a journal of the International Institute of Anticancer Research. From January 2013 CGP is converted to an online-only open access journal. Cancer Genomics & Proteomics supports (a) the aims and the research projects of the INTERNATIONAL INSTITUTE OF ANTICANCER RESEARCH and (b) the organization of the INTERNATIONAL CONFERENCES OF ANTICANCER RESEARCH.
期刊最新文献
Comparative Proteomics of ccRCC Cell Lines to Identify Kidney Cancer Progression Factors. Cordycepin Activates Autophagy to Suppress FGF9-induced TM3 Mouse Leydig Progenitor Cell Proliferation. Extensive DNA Damage and Loss of Cell Viability Occur Synergistically With the Combination of Recombinant Methioninase and Paclitaxel on Pancreatic Cancer Cells which Report DNA-Damage Response in Real Time. GD2 in Breast Cancer: A Potential Biomarker and Therapeutic Target. Gene Expression Profiling Regulated by lncRNA H19 Using Bioinformatic Analyses in Glioma Cell Lines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1