Zn-Doped Hollow Cubic MnO2 as a High-Performance Cathode Material for Zn Ion Batteries.

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL Chemphyschem Pub Date : 2024-10-29 DOI:10.1002/cphc.202400860
Guangming Li, Wenjie Yu, Qiqi Diao, Yutong Zhang, Fen Tang, Xinlong Luo, Liting Yan, Xuebo Zhao, Guangda Li
{"title":"Zn-Doped Hollow Cubic MnO<sub>2</sub> as a High-Performance Cathode Material for Zn Ion Batteries.","authors":"Guangming Li, Wenjie Yu, Qiqi Diao, Yutong Zhang, Fen Tang, Xinlong Luo, Liting Yan, Xuebo Zhao, Guangda Li","doi":"10.1002/cphc.202400860","DOIUrl":null,"url":null,"abstract":"<p><p>Manganese-based compounds have the characteristics of high theoretical capacity, low cost and stable performance, thus become a research hotspot for cathode materials of zinc-ion batteries (ZIBs). However, in the process of charging and discharging, it is accompanied by problems such as structural collapse and low conductivity, which resulted in severe capacity degration during cycles. In this paper, a kind of Zn<sup>2+</sup> doped MnO<sub>2</sub> hollow cube cathode material (Zn-MnO<sub>2</sub>) was prepared by self-sacrificing template method. The Zn<sup>2+</sup> doped in MnO<sub>2</sub> crystals can induce oxygen vacancies in the structure, thereby improving the structural stability ion diffusion coefficient and electrical conductivity of the material. After 100 cycles at 0.3 A g<sup>-1</sup>, the high specific capacity of 281.2 mA h g<sup>-1</sup> is still maintained. Through ex-situ XPS and ex-situ XRD tests, the mechanism of charge-discharge process was discussed. The results show that the storage mechanism of Zn-MnO<sub>2</sub> is H<sup>+</sup> and Zn<sup>2+</sup> insertion/removal and Mn<sup>3+</sup>/Mn<sup>2+</sup> two-electron reaction pathway. The total state density (TDOS) and partial state density (PDOS) of Zn-MnO<sub>2</sub> and MnO<sub>2</sub> further demonstrated that the doping of Zn2+ enhanced the electron conductivity and is beneficial to the electron transfer during the electrochemical reaction.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400860"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400860","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Manganese-based compounds have the characteristics of high theoretical capacity, low cost and stable performance, thus become a research hotspot for cathode materials of zinc-ion batteries (ZIBs). However, in the process of charging and discharging, it is accompanied by problems such as structural collapse and low conductivity, which resulted in severe capacity degration during cycles. In this paper, a kind of Zn2+ doped MnO2 hollow cube cathode material (Zn-MnO2) was prepared by self-sacrificing template method. The Zn2+ doped in MnO2 crystals can induce oxygen vacancies in the structure, thereby improving the structural stability ion diffusion coefficient and electrical conductivity of the material. After 100 cycles at 0.3 A g-1, the high specific capacity of 281.2 mA h g-1 is still maintained. Through ex-situ XPS and ex-situ XRD tests, the mechanism of charge-discharge process was discussed. The results show that the storage mechanism of Zn-MnO2 is H+ and Zn2+ insertion/removal and Mn3+/Mn2+ two-electron reaction pathway. The total state density (TDOS) and partial state density (PDOS) of Zn-MnO2 and MnO2 further demonstrated that the doping of Zn2+ enhanced the electron conductivity and is beneficial to the electron transfer during the electrochemical reaction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺锌空心立方氧化锰作为锰离子电池的高性能阴极材料。
锰基化合物具有理论容量高、成本低、性能稳定等特点,因此成为锌离子电池正极材料的研究热点。然而,在充放电过程中,伴随着结构塌陷、导电率低等问题,导致循环过程中容量衰减严重。本文采用自牺牲模板法制备了一种掺杂 Zn2+ 的 MnO2 中空立方体阴极材料(Zn-MnO2)。掺杂在 MnO2 晶体中的 Zn2+ 能诱导结构中的氧空位,从而提高材料的结构稳定性、离子扩散系数和导电率。在 0.3 A g-1 的条件下循环 100 次后,仍能保持 281.2 mA h g-1 的高比容量。通过原位 XPS 和原位 XRD 测试,讨论了充放电过程的机理。结果表明,Zn-MnO2 的存储机理是 H+ 和 Zn2+ 的插入/移出以及 Mn3+/Mn2+ 的双电子反应途径。Zn-MnO2 和 MnO2 的总态密度(TDOS)和部分态密度(PDOS)进一步表明,Zn2+ 的掺杂增强了电子传导性,有利于电化学反应过程中的电子转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
期刊最新文献
Understanding Ion-Specific "Hofmeister" Effects in Enzyme Catalysis Through Using RNase A as a Paradigm Model. Understanding the Effects of Surface and Edge Functionalization on the Mechanical Properties of Graphene and Graphene Oxide. Absorption and Excited-State Coherences of Cryogenically Cold Retinal Protonated Schiff Base in Vacuo. Stable π​ Radical BDPA: Adsorption on Cu(100) and Survival of Spin. What is the exchange-repulsion energy? Insight by partitioning into physically meaningful contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1