Xander Jacquemyn, Bhargava K Chinni, Benjamin T Barnes, Sruti Rao, Shelby Kutty, Cedric Manlhiot
{"title":"Unsupervised machine learning identifies distinct phenotypes in cardiac complications of pediatric patients treated with anthracyclines.","authors":"Xander Jacquemyn, Bhargava K Chinni, Benjamin T Barnes, Sruti Rao, Shelby Kutty, Cedric Manlhiot","doi":"10.1186/s40959-024-00276-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Anthracyclines are essential in pediatric cancer treatment, but patients are at risk cancer therapy-related cardiac dysfunction (CTRCD). Standardized definitions by the International Cardio-Oncology Society (IC-OS) aim to enhance precision in risk assessment.</p><p><strong>Objectives: </strong>Categorize distinct phenotypes among pediatric patients undergoing anthracycline chemotherapy using unsupervised machine learning.</p><p><strong>Methods: </strong>Pediatric cancer patients undergoing anthracycline chemotherapy at our institution were retrospectively included. Clinical and echocardiographic data at baseline, along with follow-up data, were collected from patient records. Unsupervised machine learning was performed, involving dimensionality reduction using principal component analysis and K-means clustering to identify different phenotypic clusters. Identified phenogroups were analyzed for associations with CTRCD, defined following contemporary IC-OS definitions, and hypertensive response.</p><p><strong>Results: </strong>A total of 187 patients (63.1% male, median age 15.5 years [10.4-18.7]) were included and received anthracycline chemotherapy with a median treatment duration of 0.66 years [0.35-1.92]. Median follow-up duration was 2.78 years [1.31-4.21]. Four phenogroups were identified with following distribution: Cluster 0 (32.6%, n = 61), Cluster 1 (13.9%, n = 26), Cluster 2 (24.6%, n = 46), and Cluster 3 (28.9%, n = 54). Cluster 0 showed the highest risk of moderate CTRCD (HR: 3.10 [95% CI: 1.18-8.16], P = 0.022) compared to other clusters. Cluster 3 demonstrated a protective effect against hypertensive response (HR: 0.30 [95% CI: 0.13- 0.67], P = 0.003) after excluding baseline hypertensive patients. Longitudinal assessments revealed differences in global longitudinal strain and systolic blood pressure among phenogroups.</p><p><strong>Conclusions: </strong>Unsupervised machine learning identified distinct phenogroups among pediatric cancer patients undergoing anthracycline chemotherapy, offering potential for personalized risk assessment.</p>","PeriodicalId":9804,"journal":{"name":"Cardio-oncology","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514752/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardio-oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40959-024-00276-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Anthracyclines are essential in pediatric cancer treatment, but patients are at risk cancer therapy-related cardiac dysfunction (CTRCD). Standardized definitions by the International Cardio-Oncology Society (IC-OS) aim to enhance precision in risk assessment.
Objectives: Categorize distinct phenotypes among pediatric patients undergoing anthracycline chemotherapy using unsupervised machine learning.
Methods: Pediatric cancer patients undergoing anthracycline chemotherapy at our institution were retrospectively included. Clinical and echocardiographic data at baseline, along with follow-up data, were collected from patient records. Unsupervised machine learning was performed, involving dimensionality reduction using principal component analysis and K-means clustering to identify different phenotypic clusters. Identified phenogroups were analyzed for associations with CTRCD, defined following contemporary IC-OS definitions, and hypertensive response.
Results: A total of 187 patients (63.1% male, median age 15.5 years [10.4-18.7]) were included and received anthracycline chemotherapy with a median treatment duration of 0.66 years [0.35-1.92]. Median follow-up duration was 2.78 years [1.31-4.21]. Four phenogroups were identified with following distribution: Cluster 0 (32.6%, n = 61), Cluster 1 (13.9%, n = 26), Cluster 2 (24.6%, n = 46), and Cluster 3 (28.9%, n = 54). Cluster 0 showed the highest risk of moderate CTRCD (HR: 3.10 [95% CI: 1.18-8.16], P = 0.022) compared to other clusters. Cluster 3 demonstrated a protective effect against hypertensive response (HR: 0.30 [95% CI: 0.13- 0.67], P = 0.003) after excluding baseline hypertensive patients. Longitudinal assessments revealed differences in global longitudinal strain and systolic blood pressure among phenogroups.
Conclusions: Unsupervised machine learning identified distinct phenogroups among pediatric cancer patients undergoing anthracycline chemotherapy, offering potential for personalized risk assessment.