Mixed Cardiogenic Shock: A Proposal for Standardized Classification, a Hemodynamic Definition, and Framework for Management.

IF 5.2 3区 工程技术 Q2 ENERGY & FUELS Energy & Fuels Pub Date : 2024-10-29 Epub Date: 2024-10-28 DOI:10.1161/CIRCULATIONAHA.124.069508
Sean van Diepen, Janine Pöss, Janek M Senaratne, Ann Gage, David A Morrow
{"title":"Mixed Cardiogenic Shock: A Proposal for Standardized Classification, a Hemodynamic Definition, and Framework for Management.","authors":"Sean van Diepen, Janine Pöss, Janek M Senaratne, Ann Gage, David A Morrow","doi":"10.1161/CIRCULATIONAHA.124.069508","DOIUrl":null,"url":null,"abstract":"<p><p>The classification of cardiogenic shock (CS) has evolved from a singular cold-and wet-hemodynamic profile. Data from registries and clinical trials have contributed to a broader recognition that although all patients with CS have insufficient cardiac output leading to end organ hypoperfusion, there is considerable variability in CS acuity, underlying etiologies, volume status, and systemic vascular resistance. Mixed CS can be broadly categorized as <i>CS with at least 1 additional shock state</i>. Mixed CS states are now the second leading cause of shock in contemporary coronary intensive care units, but there is little high-quality evidence to guide routine care, and there are no standardized classification frameworks or well-established hemodynamic definitions. This primer summarizes the current epidemiology and proposes a classification framework and invasive hemodynamic parameters to guide categorization that could be applied to help better phenotype patients captured in registries and trials, as well as guide management of mixed CS states.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCULATIONAHA.124.069508","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The classification of cardiogenic shock (CS) has evolved from a singular cold-and wet-hemodynamic profile. Data from registries and clinical trials have contributed to a broader recognition that although all patients with CS have insufficient cardiac output leading to end organ hypoperfusion, there is considerable variability in CS acuity, underlying etiologies, volume status, and systemic vascular resistance. Mixed CS can be broadly categorized as CS with at least 1 additional shock state. Mixed CS states are now the second leading cause of shock in contemporary coronary intensive care units, but there is little high-quality evidence to guide routine care, and there are no standardized classification frameworks or well-established hemodynamic definitions. This primer summarizes the current epidemiology and proposes a classification framework and invasive hemodynamic parameters to guide categorization that could be applied to help better phenotype patients captured in registries and trials, as well as guide management of mixed CS states.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合性心源性休克:关于标准化分类、血液动力学定义和管理框架的建议。
心源性休克(CS)的分类已从单一的冷湿血流动力学特征演变而来。来自登记处和临床试验的数据促使人们更广泛地认识到,虽然所有 CS 患者都存在心输出量不足导致终末器官灌注不足的情况,但 CS 的严重程度、潜在病因、血容量状态和全身血管阻力存在相当大的差异。混合 CS 可大致分为 CS 和至少一种附加休克状态。目前,混合 CS 状态是当代冠心病重症监护病房中导致休克的第二大原因,但几乎没有高质量的证据来指导常规护理,也没有标准化的分类框架或完善的血流动力学定义。本手册总结了当前的流行病学,并提出了一个分类框架和有创血液动力学参数来指导分类,可用于帮助更好地对登记和试验中的患者进行表型,并指导混合 CS 状态的管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy & Fuels
Energy & Fuels 工程技术-工程:化工
CiteScore
9.20
自引率
13.20%
发文量
1101
审稿时长
2.1 months
期刊介绍: Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.
期刊最新文献
A Tale of Two Maladies: Interplay of Mendelian Principles. Randomized Crossover Trial of 2-Week Ketone Ester Treatment in Patients With Type 2 Diabetes and Heart Failure With Preserved Ejection Fraction. Endothelial-to-Mesenchymal Transition Contributes to Accelerated Atherosclerosis in Hutchinson-Gilford Progeria Syndrome. Myocardial Ischemic Syndromes: A New Nomenclature to Harmonize Evolving International Clinical Practice Guidelines. Efficacy and Safety of Catheter-Based Radiofrequency Renal Denervation in Chinese Patients With Uncontrolled Hypertension: The Randomized, Sham-Controlled, Multi-Center Iberis-HTN Trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1