Samantha Gonçalves, Luciano Molognoni, Heitor Daguer, Ana Paula Fabichak Ribeiro, Carolina Turnes Pasini Deolindo, Luciano Vitali, Rodrigo Hoff
{"title":"Pressurized liquid extraction of sulfite for quantitation by capillary zone electrophoresis.","authors":"Samantha Gonçalves, Luciano Molognoni, Heitor Daguer, Ana Paula Fabichak Ribeiro, Carolina Turnes Pasini Deolindo, Luciano Vitali, Rodrigo Hoff","doi":"10.1002/elps.202400115","DOIUrl":null,"url":null,"abstract":"<p><p>Sulfite is an additive used in shrimp processing to prevent discoloration. However, sulfite can cause health issues for sensitive consumers, making its monitoring necessary. Determining sulfite concentrations is complex because the Monier-Williams reference method is laborious and has low analytical throughput. Additionally, new techniques are needed to stabilize sulfite during the extraction process because this analyte undergoes rapid oxidation. A new method involving extraction and derivatization of sulfite with formaldehyde through automated pressurized liquid extraction (PLE), followed by quantitation by capillary zone electrophoresis with diode-array detector in indirect mode, was developed and optimized using multivariate planning. The PLE procedure was compared to another solid-liquid extraction method. The new method successfully stabilized and extracted sulfite from shrimp in few steps with adequate precision (CV < 3.8%), producing extracts that were stable for 10 days. Recovery was satisfactory (97%-99%), and the limits of detection (4.6 mg kg<sup>-1</sup>) and quantitation (15.4 mg kg<sup>-1</sup>) were suitable for the intended purpose.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.202400115","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Sulfite is an additive used in shrimp processing to prevent discoloration. However, sulfite can cause health issues for sensitive consumers, making its monitoring necessary. Determining sulfite concentrations is complex because the Monier-Williams reference method is laborious and has low analytical throughput. Additionally, new techniques are needed to stabilize sulfite during the extraction process because this analyte undergoes rapid oxidation. A new method involving extraction and derivatization of sulfite with formaldehyde through automated pressurized liquid extraction (PLE), followed by quantitation by capillary zone electrophoresis with diode-array detector in indirect mode, was developed and optimized using multivariate planning. The PLE procedure was compared to another solid-liquid extraction method. The new method successfully stabilized and extracted sulfite from shrimp in few steps with adequate precision (CV < 3.8%), producing extracts that were stable for 10 days. Recovery was satisfactory (97%-99%), and the limits of detection (4.6 mg kg-1) and quantitation (15.4 mg kg-1) were suitable for the intended purpose.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.