{"title":"scSwinTNet: A Cell Type Annotation Method for Large-Scale Single-Cell RNA-Seq Data Based on Shifted Window Attention.","authors":"Huanhuan Dai, Xiangyu Meng, Zhiyi Pan, Qing Yang, Haonan Song, Yuan Gao, Xun Wang","doi":"10.1109/JBHI.2024.3487174","DOIUrl":null,"url":null,"abstract":"<p><p>The annotation of cell types based on single-cell RNA sequencing (scRNA-seq) data is a critical downstream task in single-cell analysis, with significant implications for a deeper understanding of biological processes. Most analytical methods cluster cells by unsupervised clustering, which requires manual annotation for cell type determination. This procedure is time-overwhelming and non-repeatable. To accommodate the exponential growth of sequencing cells, reduce the impact of data bias, and integrate large-scale datasets for further improvement of type annotation accuracy, we proposed scSwinTNet. It is a pre-trained tool for annotating cell types in scRNA-seq data, which uses self-attention based on shifted windows and enables intelligent information extraction from gene data. We demonstrated the effectiveness and robustness of scSwinTNet by using 399 760 cells from human and mouse tissues. To the best of our knowledge, scSwinTNet is the first model to annotate cell types in scRNA-seq data using a pre-trained shifted window attention-based model. It does not require a priori knowledge and accurately annotates cell types without manual annotation.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2024.3487174","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The annotation of cell types based on single-cell RNA sequencing (scRNA-seq) data is a critical downstream task in single-cell analysis, with significant implications for a deeper understanding of biological processes. Most analytical methods cluster cells by unsupervised clustering, which requires manual annotation for cell type determination. This procedure is time-overwhelming and non-repeatable. To accommodate the exponential growth of sequencing cells, reduce the impact of data bias, and integrate large-scale datasets for further improvement of type annotation accuracy, we proposed scSwinTNet. It is a pre-trained tool for annotating cell types in scRNA-seq data, which uses self-attention based on shifted windows and enables intelligent information extraction from gene data. We demonstrated the effectiveness and robustness of scSwinTNet by using 399 760 cells from human and mouse tissues. To the best of our knowledge, scSwinTNet is the first model to annotate cell types in scRNA-seq data using a pre-trained shifted window attention-based model. It does not require a priori knowledge and accurately annotates cell types without manual annotation.
期刊介绍:
IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.