Adjustable Jacobi-Fourier Moment for Image Representation.

IF 9.4 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Cybernetics Pub Date : 2024-10-28 DOI:10.1109/TCYB.2024.3482352
Jianwei Yang, Xin Yuan, Xiaoqi Lu, Yuan Yan Tang
{"title":"Adjustable Jacobi-Fourier Moment for Image Representation.","authors":"Jianwei Yang, Xin Yuan, Xiaoqi Lu, Yuan Yan Tang","doi":"10.1109/TCYB.2024.3482352","DOIUrl":null,"url":null,"abstract":"<p><p>The widely adopted Jacobi-Fourier moment (JFM) is limited by its inability to effectively capture spatial information. Although fractional-order JFM ( FOJFM) introduces spatial information through a fractional-order parameter, the control of spatial information remains inadequate. This limitation stems from the insufficient control over zeros distribution associated with the used moment's radial kernel. To address this issue, we generalize both JFM and FOJFM into a transformed JFM. A transformed function with four parameters is designed, and adjustable JFM (AJFM) is proposed. Two parameters correlate to increasing velocities on the left and right parts of the transformed functions, enabling zeros quantities of radial kernel fall in the left and right parts of the interval. The other two parameters segment the transformed function, adjusting regions where different quantities of zeros fall in. This refined control over the radial kernel's zero distribution enhances the versatility of feature extraction by the AJFM, governed by the introduced parameters. Experimental results demonstrate that AJFM, with properly chosen parameters, can emphasize specific regions within an image more effectively.</p>","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"PP ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TCYB.2024.3482352","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The widely adopted Jacobi-Fourier moment (JFM) is limited by its inability to effectively capture spatial information. Although fractional-order JFM ( FOJFM) introduces spatial information through a fractional-order parameter, the control of spatial information remains inadequate. This limitation stems from the insufficient control over zeros distribution associated with the used moment's radial kernel. To address this issue, we generalize both JFM and FOJFM into a transformed JFM. A transformed function with four parameters is designed, and adjustable JFM (AJFM) is proposed. Two parameters correlate to increasing velocities on the left and right parts of the transformed functions, enabling zeros quantities of radial kernel fall in the left and right parts of the interval. The other two parameters segment the transformed function, adjusting regions where different quantities of zeros fall in. This refined control over the radial kernel's zero distribution enhances the versatility of feature extraction by the AJFM, governed by the introduced parameters. Experimental results demonstrate that AJFM, with properly chosen parameters, can emphasize specific regions within an image more effectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于图像表示的可调雅各比-傅里叶矩。
广泛采用的雅各比-傅里叶矩(JFM)因无法有效捕捉空间信息而受到限制。虽然分数阶 JFM(FOJFM)通过分数阶参数引入了空间信息,但对空间信息的控制仍然不足。这一局限性源于对所使用矩的径向核相关零点分布的控制不足。为了解决这个问题,我们将 JFM 和 FOJFM 推广为变换 JFM。我们设计了一个具有四个参数的变换函数,并提出了可调 JFM(AJFM)。其中两个参数与变换函数左右两部分的速度增加相关,使径向核的零量落在区间的左右两部分。另外两个参数对变换后的函数进行分割,调整不同零点量所在的区域。这种对径向核零点分布的精细控制,增强了 AJFM 特征提取的多功能性。实验结果表明,如果参数选择得当,AJFM 可以更有效地突出图像中的特定区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
期刊最新文献
Visual-Inertial-Acoustic Sensor Fusion for Accurate Autonomous Localization of Underwater Vehicles Aeroengine Bearing Time-Varying Skidding Assessment With Prior Knowledge-Embedded Dual Feedback Spatial-Temporal GCN Interval Secure Event-Triggered Mechanism for Load Frequency Control Active Defense Against DoS Attack Bayesian Transfer Filtering Using Pseudo Marginal Measurement Likelihood Granular Computing for Machine Learning: Pursuing New Development Horizons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1