Fo Hu;Mengyuan Qian;Kailun He;Wen-An Zhang;Xusheng Yang
{"title":"A Novel Multi-Feature Fusion Network With Spatial Partitioning Strategy and Cross-Attention for Armband-Based Gesture Recognition","authors":"Fo Hu;Mengyuan Qian;Kailun He;Wen-An Zhang;Xusheng Yang","doi":"10.1109/TNSRE.2024.3487216","DOIUrl":null,"url":null,"abstract":"Effectively integrating the time-space-frequency information of multi-modal signals from armband sensor, including surface electromyogram (sEMG) and accelerometer data, is critical for accurate gesture recognition. Existing approaches often neglect the abundant spatial relationships inherent in multi-channel sEMG signals obtained via armband sensors and face challenges in harnessing the correlations across multiple feature domains. To address this issue, we propose a novel multi-feature fusion network with spatial partitioning strategy and cross-attention (MFN-SPSCA) to improve the accuracy and robustness of gesture recognition. Specifically, a spatiotemporal graph convolution module with a spatial partitioning strategy is designed to capture potential spatial feature of multi-channel sEMG signals. Additionally, we design a cross-attention fusion module to learn and prioritize the importance and correlation of multi-feature domain. Extensive experiment demonstrate that the MFN-SPSCA method outperforms other state-of-the-art methods on self-collected dataset and the Ninapro DB5 dataset. Our work addresses the challenge of recognizing gestures from the multi-modal data collected by armband sensor, emphasizing the importance of integrating time-space-frequency information. Codes are available at \n<uri>https://github.com/ZJUTofBrainIntelligence/MFN-SPSCA</uri>\n.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10737142","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10737142/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Effectively integrating the time-space-frequency information of multi-modal signals from armband sensor, including surface electromyogram (sEMG) and accelerometer data, is critical for accurate gesture recognition. Existing approaches often neglect the abundant spatial relationships inherent in multi-channel sEMG signals obtained via armband sensors and face challenges in harnessing the correlations across multiple feature domains. To address this issue, we propose a novel multi-feature fusion network with spatial partitioning strategy and cross-attention (MFN-SPSCA) to improve the accuracy and robustness of gesture recognition. Specifically, a spatiotemporal graph convolution module with a spatial partitioning strategy is designed to capture potential spatial feature of multi-channel sEMG signals. Additionally, we design a cross-attention fusion module to learn and prioritize the importance and correlation of multi-feature domain. Extensive experiment demonstrate that the MFN-SPSCA method outperforms other state-of-the-art methods on self-collected dataset and the Ninapro DB5 dataset. Our work addresses the challenge of recognizing gestures from the multi-modal data collected by armband sensor, emphasizing the importance of integrating time-space-frequency information. Codes are available at
https://github.com/ZJUTofBrainIntelligence/MFN-SPSCA
.
期刊介绍:
Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.