Koopman-Based Model Predictive Control of Functional Electrical Stimulation for Ankle Dorsiflexion and Plantarflexion Assistance.

IF 4.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Transactions on Neural Systems and Rehabilitation Engineering Pub Date : 2025-03-17 DOI:10.1109/TNSRE.2025.3551933
Mayank Singh, Noor Hakam, Trisha M Kesar, Nitin Sharma
{"title":"Koopman-Based Model Predictive Control of Functional Electrical Stimulation for Ankle Dorsiflexion and Plantarflexion Assistance.","authors":"Mayank Singh, Noor Hakam, Trisha M Kesar, Nitin Sharma","doi":"10.1109/TNSRE.2025.3551933","DOIUrl":null,"url":null,"abstract":"<p><p>Functional Electrical Stimulation (FES) can be an effective tool to augment paretic muscle function and restore normal ankle function. Our approach incorporates a real-time, data-driven Model Predictive Control (MPC) scheme built upon a Koopman operator theory (KOT) framework. This framework adeptly captures the complex nonlinear dynamics of ankle motion in a linearized form, enabling the application of linear control approaches for highly nonlinear FES-actuated dynamics. Our method accurately predicts the FES-induced ankle movements, accounting for nonlinear muscle actuation dynamics, including the muscle activation for both plantarflexors and dorsiflexors (Tibialis Anterior (TA)). The linear prediction model derived through KOT allowed the formulation of the MPC problem with linear state space dynamics, enhancing the FES-driven controls real-time feasibility, precision, and adaptability. We demonstrate the effectiveness and applicability of our approach through comprehensive simulations and experimental trials, including three participants with no disability and a participant with Multiple Sclerosis. Our findings highlight the potential of a KOT-based MPC approach for FES-based gait assistance that offers effective and personalized assistance for individuals with gait impairment conditions.</p>","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TNSRE.2025.3551933","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Functional Electrical Stimulation (FES) can be an effective tool to augment paretic muscle function and restore normal ankle function. Our approach incorporates a real-time, data-driven Model Predictive Control (MPC) scheme built upon a Koopman operator theory (KOT) framework. This framework adeptly captures the complex nonlinear dynamics of ankle motion in a linearized form, enabling the application of linear control approaches for highly nonlinear FES-actuated dynamics. Our method accurately predicts the FES-induced ankle movements, accounting for nonlinear muscle actuation dynamics, including the muscle activation for both plantarflexors and dorsiflexors (Tibialis Anterior (TA)). The linear prediction model derived through KOT allowed the formulation of the MPC problem with linear state space dynamics, enhancing the FES-driven controls real-time feasibility, precision, and adaptability. We demonstrate the effectiveness and applicability of our approach through comprehensive simulations and experimental trials, including three participants with no disability and a participant with Multiple Sclerosis. Our findings highlight the potential of a KOT-based MPC approach for FES-based gait assistance that offers effective and personalized assistance for individuals with gait impairment conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.60
自引率
8.20%
发文量
479
审稿时长
6-12 weeks
期刊介绍: Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.
期刊最新文献
Impact of Generation Rate of Speech Imagery on Neural Activity and BCI Decoding Performance: A fNIRS Study. Leveraging Extended Windows in End-to-End Deep Learning for Improved Continuous Myoelectric Locomotion Prediction. Decoding intrinsic fluctuations of engagement from EEG signals during fingertip motor tasks. Koopman-Based Model Predictive Control of Functional Electrical Stimulation for Ankle Dorsiflexion and Plantarflexion Assistance. High-Density Surface EMG Decomposition: Achievements, Challenges, and Concerns.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1