Biocatalytic Potential of Pseudomonas Species in the Degradation of Polycyclic Aromatic Hydrocarbons.

IF 3.5 4区 生物学 Q2 MICROBIOLOGY Journal of Basic Microbiology Pub Date : 2024-10-29 DOI:10.1002/jobm.202400448
Sivabalan Sivasamy, Shanmuganathan Rajangam, Thanigaivelan Kanagasabai, Dakshina Bisht, Rajkumar Prabhakaran, Sivanesan Dhandayuthapani
{"title":"Biocatalytic Potential of Pseudomonas Species in the Degradation of Polycyclic Aromatic Hydrocarbons.","authors":"Sivabalan Sivasamy, Shanmuganathan Rajangam, Thanigaivelan Kanagasabai, Dakshina Bisht, Rajkumar Prabhakaran, Sivanesan Dhandayuthapani","doi":"10.1002/jobm.202400448","DOIUrl":null,"url":null,"abstract":"<p><p>Polycyclic aromatic hydrocarbons (PAHs), one of the major environmental pollutants, produced from incomplete combustion of materials like coal, oil, gas, wood, and charbroiled meat, that contaminate the air, soil, and water, necessitating urgent remediation. Understanding the metabolic pathways for PAHs degradation is crucial to preventing environmental damage and health issues. Biological methods are gaining increasing interest due to their cost-effectiveness and environmental friendliness. These methods are particularly suitable for remediating PAHs contamination and mitigating associated risks. The paper also outlines the processes for biodegrading PAHs, emphasizing the function of Pseudomonas spp., a kind of bacterium recognized for its capacity to degrade PAHs. To eliminate PAHs from the environment and reduce threats to human health and the environment, Pseudomonas spp. is essential. Understanding the mechanism of PAH breakdown by means of microbes could lead to effective clean-up strategies. The review highlights the enzymatic capabilities, adaptability, and genetic versatility of the genes like nah and phn of Pseudomonas spp., which are involved in PAHs degradation pathways. Scientific evidence supports using Pseudomonas spp. as biocatalysts for PAHs clean-up, offering cost-effective and eco-friendly solutions.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e2400448"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jobm.202400448","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Polycyclic aromatic hydrocarbons (PAHs), one of the major environmental pollutants, produced from incomplete combustion of materials like coal, oil, gas, wood, and charbroiled meat, that contaminate the air, soil, and water, necessitating urgent remediation. Understanding the metabolic pathways for PAHs degradation is crucial to preventing environmental damage and health issues. Biological methods are gaining increasing interest due to their cost-effectiveness and environmental friendliness. These methods are particularly suitable for remediating PAHs contamination and mitigating associated risks. The paper also outlines the processes for biodegrading PAHs, emphasizing the function of Pseudomonas spp., a kind of bacterium recognized for its capacity to degrade PAHs. To eliminate PAHs from the environment and reduce threats to human health and the environment, Pseudomonas spp. is essential. Understanding the mechanism of PAH breakdown by means of microbes could lead to effective clean-up strategies. The review highlights the enzymatic capabilities, adaptability, and genetic versatility of the genes like nah and phn of Pseudomonas spp., which are involved in PAHs degradation pathways. Scientific evidence supports using Pseudomonas spp. as biocatalysts for PAHs clean-up, offering cost-effective and eco-friendly solutions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
假单胞菌在降解多环芳香烃中的生物催化潜力。
多环芳烃(PAHs)是主要的环境污染物之一,由煤、石油、天然气、木材和烧焦的肉类等物质不完全燃烧产生,污染空气、土壤和水源,急需采取补救措施。了解多环芳烃降解的代谢途径对于防止环境破坏和健康问题至关重要。生物方法因其成本效益和环境友好性而越来越受到关注。这些方法尤其适用于修复多环芳烃污染和降低相关风险。本文还概述了多环芳烃的生物降解过程,强调了假单胞菌属的功能,这是一种公认具有降解多环芳烃能力的细菌。要消除环境中的多环芳烃,减少对人类健康和环境的威胁,假单胞菌是必不可少的。了解微生物分解多环芳烃的机理有助于制定有效的清洁策略。本综述强调了参与多环芳烃降解途径的假单胞菌 nah 和 phn 等基因的酶能力、适应性和遗传多样性。科学证据支持使用假单胞菌属作为多环芳烃净化的生物催化剂,提供具有成本效益和生态友好的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Basic Microbiology
Journal of Basic Microbiology 生物-微生物学
CiteScore
6.10
自引率
0.00%
发文量
134
审稿时长
1.8 months
期刊介绍: The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions. Papers published deal with: microbial interactions (pathogenic, mutualistic, environmental), ecology, physiology, genetics and cell biology/development, new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications) novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).
期刊最新文献
Green Synthesis of Silver-Doped ZnO Nanoparticles From Adiantum venustum D. Don (Pteridaceae): Antimicrobial and Antioxidant Evaluation. Recent Advancements and Strategies for Omega-3 Fatty Acid Production in Yeast. Autophagy Activated by Atg1 Interacts With Atg9 Promotes Biofilm Formation and Resistance of Candida albicans. The Discovery of Novel ER-Localized Cellobiose Transporters Involved in Cellulase Biosynthesis in Trichoderma reesei. Biodegradation of Organophosphorus Insecticides by Bacillus Species Isolated From Soil.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1